Free Access
Volume 55, Number 2, April-June 2020
Page(s) 117 - 122
Published online 30 June 2020
  • Bernier MO, Baysson H, Pearce MS, Moissonnier M, Cardis E, Hauptmann M, Struelens Dabin J, Johansen C, Journy N, Laurier D, Blettner M, Le Cornet L, Pokora R, Gradowska P, Meulepas JM, Kjaerheim K, Istad T, Olerud H, Sovik A, Bosch de Basea M, Thierry-Chef I, Kaijser ML, Nordenskjöld A, Berrington de Gonzalez A, Harbron RW, Kesminiene A. 2019. Cohort profile: the EPI-CT study: a European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT. Int. J. Epidemiol. 48(2): 379–381. [CrossRef] [PubMed] [Google Scholar]
  • Bosch de Basea M, Pearce MS, Kesminiene A, Bernier MO, Dabin J, Engels H, Hauptmann M, Krille L, Meulepas JM, Struelens L, Baatout S, Kaijser M, Maccia C, Jahnen A, Thierry-Chef I, Blettner M, Johansen C, Kjaerheim K, Nordenskjöld A, Olerud H, Salotti JA, Andersen TV, Vrijheid M, Cardis E. 2015. EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT. J. Radiol. Prot. 35: 611. [CrossRef] [PubMed] [Google Scholar]
  • Bourguignon M, Bérard P, Bertho JM, Farah J, Mercat C, Radioprotection Editorial Board. 2017. What’s next in Radioprotection? Radioprotection 52(1): 21–28. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brand M, Wuest W, May M, Uder M, Sommer M. 2018. Influence of risk-organ-based tube current modulation on CT-induced DNA double-strand breaks in a biological phantom model. J. Radiat. Res. 59(6): 692–699. [PubMed] [Google Scholar]
  • Brenner D, Elliston C, Hall E, Berdon W. 2001. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am. J. Roentgenol. 176(2): 289–296. [CrossRef] [PubMed] [Google Scholar]
  • Daldrup-Link H. 2019. Artificial intelligence applications for pediatric oncology imaging. Pediatr. Radiol. 49(11): 1384–1390. [CrossRef] [PubMed] [Google Scholar]
  • Deak PD, Langner O, Lell M, Kalender WA. 2009. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252(1). [Google Scholar]
  • Granata C, Sorantin E, Seuri R, Owens CM. 2019. European Society of Paediatric Radiology computed tomography and dose task force: European guidelines on diagnostic reference levels for paediatric imaging. Pediatr. Radiol. 49: 702–705. [CrossRef] [PubMed] [Google Scholar]
  • ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37(2-4). [Google Scholar]
  • Journal officiel de la république française (30 Mai 2019). 2019. Arrêté du 23 mai 2019 portant homologation de la décision no 2019-DC-0667 de l’Autorité de sûreté nucléaire du 18 avril 2019 relative aux modalités d’évaluation des doses de rayonnements ionisants délivrées aux patients lors d’un acte de radiologie, de pratiques interventionnelles radioguidées ou de médecine nucléaire et à la mise à jour des niveaux de référence diagnostiques associés. [Google Scholar]
  • Khawajo RDA, Singh S, Otrakji A, Padole A, Lim R, Nimkin K, Westra SJ, Kalra MK, Gee M. 2014. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniquesacross different CT platforms. Pediatr. Radiol. 45. [Google Scholar]
  • Kim JS, Kwon SM, Kim JM, Yoon SW. 2017. New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol. Med. 122(8): 601–608. [PubMed] [Google Scholar]
  • Kritsaneepaiboon S, Trinavarat P, Visrutaratna P. 2012. Survey of pediatric MDCT radiation dose from university hospitals in Thailand: a preliminary for national dose survey. Acta Radiol. 53: 820–826. [CrossRef] [PubMed] [Google Scholar]
  • Li M, Feng S, Wu N, Zhang L. 2017. Scout-based automated tube potential selection technique (kV Assist) in enhanced chest computed tomography: effects on radiation exposure and image quality. J. Comput. Assist. Tomogr. 41(3): 442–445. [CrossRef] [PubMed] [Google Scholar]
  • Liao YL, Lai NK, Tyan YS, Tsai HY. 2019. Bismuth shield affecting CT image quality and radiation dose in adjacent and distant zones relative to shielding surface: a phantom study. Biomed. J. 43: 343–51. [Google Scholar]
  • Mannudeep K. 2016. Optimization of paediatric CT. Phys. Med. 32: 182. [PubMed] [Google Scholar]
  • Marsh RM, Silosky M. 2019. Patient shielding in diagnostic imaging: discontinuing a legacy practice. AJR 212: 755–757. [CrossRef] [Google Scholar]
  • Martin CJ, Sookpeng S. 2016. Setting up computed tomography automatic tube current modulation systems. J. Radiol. Prot. 36: 74–95. [PubMed] [Google Scholar]
  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. 2013. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346: 2360. [Google Scholar]
  • Meulepas JM, Ronckers CM, Smets AMJB, Nievelstein RAJ, Gradowska P, Lee C, Jahnen A, van Straten M, de Wit MY, Zonnenberg B, Klein WM, Merks JH, Visser O, van Leeuwen FE, Hauptmann M. 2019. Radiation exposure from pediatric CT scans and subsequent cancer risk in the Netherlands. JNCI 111(3): 256–263. [CrossRef] [Google Scholar]
  • Miglioretti DL, Johnson E, Williams A, Greenlee RT, Weinmann S, Solberg LI, Feigelson HS, Roblin D, Flynn MJ, Vanneman N, Smith-Bindman R. 2013. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 67: 700–7. [Google Scholar]
  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A. 2012. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840): 499–505. [CrossRef] [PubMed] [Google Scholar]
  • Radiation Protection 118. 2000. Referral guidelines for medical imaging. European Commission. Directorate – General for the Environment. [Google Scholar]
  • Radiation Protection 185. 2018. European guidelines on diagnostic reference levels for paediatric imaging. [Google Scholar]
  • Radiation Technology Skills UP Series: Standardization in X-Ray CT Imaging-GALACTIC-(Second edition): Guideline for All About CT exams: Imaging Concept, Ohmsha Ltd, 3-1 Kanda Nishikcho, Chiyoda-ku, Tokyo, 101-8460, Japan. 2019. The Radiation imaging section of the Japanese Society of Radiological Technology. [Google Scholar]
  • Raman SP, Mahadevappa M, Blasko RV, Fishman EK. 2013. CT scan parameters and radiation dose: practical advice for radiologists. JACR 10: 840–6. [Google Scholar]
  • Rensselaer Polytechnic Institute. 2019. “ Machine learning approach for low-dose CT imaging yields superior results: Findings make a strong case for harnessing the power of artificial intelligence in CT ”. ScienceDaily. [Google Scholar]
  • Roch P, Célier D, Dessaud C, Etard C. 2018. Les niveaux de référence diagnostiques en France : une perception contrastée face à un dispositif perfectible mais efficace. Radioprotection 53(1): 13–19. [EDP Sciences] [Google Scholar]
  • Shao YH, Tsai K, Kim S, Wu YJ, Demissie K. 2020. Exposure to tomographic scans and cancer risks. JNCI Cancer Spectrum 4(1): pkz072. [CrossRef] [PubMed] [Google Scholar]
  • Siegel MJ, Ramirez-Giralodo JC. 2019. Dual-energy CT in children: imaging algorithms and clinical applications. Radiology 291(2): 286–297. [CrossRef] [PubMed] [Google Scholar]
  • Sodhi KS et al. 2015. Clinical application of “Justification” and “Optimization” principle of ALARA in pediatric CT imaging: “How many children can be protected from unnecessary radiation? ” Eur. J. Radiol. 84: 1752–1757. [CrossRef] [PubMed] [Google Scholar]
  • Strauss K et al. 2010. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR 194(4): 868–873. [CrossRef] [Google Scholar]
  • Willemink MJ, Noël PB. 2019. The evolution of image reconstruction for CT – from filtered back projection to artificial intelligence. Eur. Radiol. 29: 2185–2195. [CrossRef] [PubMed] [Google Scholar]
  • Zacharias C, Alessio AM, Otto RK, Iyer RS, Philips GS, Swanson JO, Thapa MM. 2013. Pediatric CT: strategies to lower radiation dose. AJR 200: 950–6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.