Free Access
Volume 55, Number 2, April - June 2020
Page(s) 107 - 115
Published online 30 June 2020
  • Bourguignon M, Bérard P, Bertho J, Farah J, Mercat C. 2017. What’s next in Radioprotection? Radioprotection 52: 21–28 [CrossRef] [EDP Sciences] [Google Scholar]
  • Doury A. 1976. Une méthode de calcul pratique et générale pour la prévision numérique des pollutions véhiculées dans l’atmosphère. CEA. Rapport. [Google Scholar]
  • Korsakissok I, Mathieu A, Didier D. 2013. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmos. Environ. 70: 267–279. Available from: [Google Scholar]
  • Liu DC, Nocedal J. 1989. On the limited memory method for large scale optimization. Math. Program. B. 45(3): 503–528. [CrossRef] [Google Scholar]
  • Lochard J, Schneider T, Ando R, Niwa O, Clement C, Lecomte JF, Tada JI. 2019. An overview of the dialogue meetings initiated by ICRP in Japan after the Fukushima accident. Radioprotection 54(2): 87–101. Available from: [EDP Sciences] [Google Scholar]
  • Saunier O, Mathieu A, Didier D, Tombette M, Quélo D, Winiarek V, Bocquet M. 2013. An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys. 13: 11403–11421. Available from: [Google Scholar]
  • Saunier O, Mathieu A, Sekiyama TT, Kajino M, Adachi K, Bocquet M, Maki T, Higarashi Y, Didier D. 2016. A new perspective on the Fukushima releases brought by newly available 137Cs air concentration observations and reliable meteorological fields. In: Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary. [Google Scholar]
  • Soulhac L, Didier D. 2008. Projet pX, note de principe pX 1.0. IRSN, Report IRSN/DEI/SESUC/08-39. [Google Scholar]
  • Tichý O, Šmídl V, Hofman R, Evangeliou N. 2018. Source term estimation of multi-specie atmospheric release of radiation from gamma dose rates. Q. J. R. Meteorol. Soc. 1–17. Available from: [Google Scholar]
  • Tombette M, Quentric E, Quélo D, Benoit JP, Mathieu A, Korsakissok I, Didier D. 2014. C3X: a software platform for assessing the consequences of an accidental release of radioactivity into the atmosphere. In: International Radiation Protection Association Congress, Geneva. [Google Scholar]
  • Winiarek V, Vira J, Bocquet M, Sofiev M, Saunier O. 2011. Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmos. Environ. 45: 2944–2955. [Google Scholar]
  • Winiarek V, Bocquet M, Saunier O, Mathieu A. 2012. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 STs from the Fukushima Daiichi power plant. J. Geophys. Res. 117: D05122. [Google Scholar]
  • Winiarek V, Bocquet M, Duhanyan N, Roustan Y, Saunier O, Mathieu A. 2014. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ. 82: 268–279. [Google Scholar]
  • Zhang X, Raskob W, Landman C, Trybushnyi D, Li Y. 2017. Sequential multi-nuclide emission rate estimation method based on gamma dose rate measurement for nuclear emergency management. J. Hazard. Mater. 325: 288–300. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.