Open Access
Issue
Radioprotection
Volume 58, Number 4, October - December
Page(s) 243 - 260
DOI https://doi.org/10.1051/radiopro/2023036
Published online 15 December 2023
  • Abalo KD, Rage E, Leuraud K, Richardson DB, Le Pointe HD, Laurier D, Bernier MO. 2021. Early life ionizing radiation exposure and cancer risks: systematic review and meta-analysis. Ped. Radiol. 51(1): 157–158. [CrossRef] [PubMed] [Google Scholar]
  • ANSES. 2017. Valeurs toxicologiques de référence : guide d’élaboration. Maisons-Alfort : Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. Valeurs toxicologiques de référence (VTR). ANSES – Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. [Google Scholar]
  • ANSES. 2018. Élaboration de VTR par inhalation pour le formaldéhyde. Maisons-Alfort : Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. Valeurs toxicologiques de référence (VTR). ANSES – Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail. [Google Scholar]
  • Averbeck D. 2009. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? Health Phys. 97(5): 493–504. [CrossRef] [PubMed] [Google Scholar]
  • Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. 2018. Progress in low dose health risk research: Novel effects and new concepts in low dose radiobiology. Mutat. Res. Rev. Mutat. Res. 776: 46–69. [CrossRef] [Google Scholar]
  • Baker SG, Soto AM, Sonnenschein C, Cappuccio A, Potter JD, Kramer BS. 2009. Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: A computer simulation of morphostats. B.M.C. Cancer 9: 89. [CrossRef] [Google Scholar]
  • Ban N, Cléro E, Vaillant L, Hamada N, Zhang W, Preston D, Laurier D. 2022. Radiation detriment calculation methodology: Summary of ICRP Publication 152. J. Radiol. Prot. 42(3). [Google Scholar]
  • Basu AK. 2018. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 19: 970. [CrossRef] [Google Scholar]
  • Barcellos-Hoff MH, Lyden D, Wang TC. 2013. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer 13(7): 511–518. [CrossRef] [PubMed] [Google Scholar]
  • Barrett C. 1993. Mechanisms of multistep carcinogenesis and carcinogen risk assessment. Environ. Health Perspect. 100: 9–20. [CrossRef] [PubMed] [Google Scholar]
  • Berrington de Gonzalez A, Daniels RD, Cardis E, Cullings HM, Gilbert E, Hauptmann M, Kendall G, Laurier D, Linet MS, Little MP, Lubin JH, Preston DL, Richardson DB, Stram D, Thierry-Chef I, Schubauer-Berigan MK. 2020. Epidemiological studies of low-dose ionizing radiation and cancer: Rationale and framework for the monograph and overview of eligible studies. J. Natl. Cancer Inst. Monogr. 56: 97–113. [CrossRef] [PubMed] [Google Scholar]
  • Bignold LP. 2003. The mutator phenotype theory of carcinogenesis and the complex histopathology of tumours: support for the theory from the independent occurrence of nuclear abnormality, loss of specialisation and invasiveness among occasional neoplastic lesions. Cell. Mol. Life Sci. 60(5): 883–891. [CrossRef] [PubMed] [Google Scholar]
  • Bizzarri M, Cucina A, Biava PM, Proietti S, D’Anselmi F, Dinicola S, Pasqualato A, Lisi E. 2011. Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Curr. Pharm. Biotechnol. 12(2): 243–253. [CrossRef] [Google Scholar]
  • Bourguignon M. 2020. Plaidoyer pour un soutien fort et durable à la recherche en radiobiologie pour optimiser la radioprotection. Radioprotection 55(3): 159–162. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bouyer J, Hémon D, Cordier S, Derriennic F, Stücker I, Stengel B, Clavel J. 2009. Épidémiologie: principes et méthodes quantitatives. Paris: Lavoisier. [Google Scholar]
  • Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaider M. 2003. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA. 100(24): 13761–6. [CrossRef] [PubMed] [Google Scholar]
  • Brenner DJ, Sachs RK. 2006. Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach. Radiat. Environ. Biophys. 44: 253–256. [CrossRef] [PubMed] [Google Scholar]
  • Brenner AV, Preston DL, Sakata R, Sugiyama H, De Gonzalez AB, French B, Utada M, Cahoon EK, Sadakane A, Ozasa K, Grant EJ, Mabuchi K. 2018. Incidence of breast cancer in the life span study of atomic bomb survivors: 1958-2009. Radiat. Res. 190(4): 433–444. [CrossRef] [PubMed] [Google Scholar]
  • Brenner AV, Sugiyama H, Preston DL, Sakata R, French B, Sadakane A, Cahoon EK, Utada M, Mabuchi K, Ozasa K. 2020. Radiation risk of central nervous system tumors in the Life Span Study of atomic bomb survivors,1958-2009. Eur. J. Epidemiol. 35(6): 591–600. [CrossRef] [PubMed] [Google Scholar]
  • Brenner AV, Preston DL, Sakata R, Cologne J, Sugiyama H, Utada M, Cahoon EK, Grant E, Mabuchi K, Ozasa K. 2022. Comparison of all solid cancer mortality and incidence dose-response in the life span study of atomic bomb survivors,1958-2009. Radiat. Res. 197(5): 491–508. [CrossRef] [Google Scholar]
  • Cahoon EK, Preston DL, Pierce DA, Grant E, Brenner AV, Mabuchi K, Utada M, Ozasa K. 2017. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: an updated analysis from 1958 through 2009. Radiat. Res. 187(5): 538–548. [CrossRef] [PubMed] [Google Scholar]
  • Calabrese EJ. 2009. The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment? Arch. Toxicol. 83: 203–225. [CrossRef] [PubMed] [Google Scholar]
  • Calabrese EJ. 2016. LNTgate: How scientific misconduct by the U.S. NAS led to governments adopting LNT for cancer risk assessment. Environ. Res. 148: 535–546. [CrossRef] [Google Scholar]
  • Calabrese EJ. 2019. The linear No-Threshold (LNT) dose response model: A comprehensive assessment of its historical and scientific foundations. Chem. Biol. Interact. 301: 6–25. [CrossRef] [Google Scholar]
  • Calabrese EJ, Selby PB. 2022. Cover up and cancer risk assessment: Prominent US scientists suppressed evidence to promote adoption of LNT. Environ. Res. 210: 112973. [CrossRef] [Google Scholar]
  • Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, Yamada Y, Tollefsen KE. 2022. Adverse outcome pathway: A path toward better data consolidation and global co-ordination of radiation research. Int. J. Radiat. Biol. 98(12): 1694–1703. [CrossRef] [PubMed] [Google Scholar]
  • Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson CM, Cousins C, Lochard J, Bouffler S, Cho K, Kai M, Laurier D, Liu S, Romanov S. 2022. Maintenir les recommandations de la CIPR adaptées aux besoins. Radioprotection 57(2): 93–106. (Traduction française de « Clement C, et al. 2021. Keeping the ICRP Recommendations Fit for Purpose. J. Radiol. Prot. 41(2): 1390–1409 »). [CrossRef] [EDP Sciences] [Google Scholar]
  • Cléro E, Bisson M, Nathalie V, Blanchardon E, Thybaud E, Billarand Y. 2021. Cancer risk from chronic exposures to chemicals and radiation: a comparison of the toxicological reference value with the radiation detriment. Radiat. Environ. Biophys. 60(4): 549. [CrossRef] [PubMed] [Google Scholar]
  • Cléro E, Vaillant L, Hamada N, Zhang W, Preston D, Laurier D, Ban N. 2019. History of radiation detriment and its calculation methodology used in ICRP Publication 103. J. Radiol. Protect. 39(3): R19–R36. [CrossRef] [PubMed] [Google Scholar]
  • Cologne J, Kim J, Sugiyama H, French B, Cullings H, Preston D, Mabuchi K, Ozasa K. 2019. Effect of heterogeneity in background incidence on inference about the solid-cancer radiation dose response in atomic bomb survivors. Radiat. Res. 192: 388–398. [CrossRef] [PubMed] [Google Scholar]
  • Cosset JM. 2022. Is the linear no-threshold (LNT) model relevant for radiotherapy? Radioprotection 57(3): 189–199. [Google Scholar]
  • Cuttler JM. 2020. The LNT issue is about politics and economics, not safety. Dose Response 18: 1559325820949066. [PubMed] [Google Scholar]
  • Cuttler JM, Calabrese EJ. 2021. What would become of nuclear risk if governments changed their regulations to recognize the evidence of radiation’s beneficial health effects for exposures that Are below the thresholds for detrimental effects? Dose Response 19(4): 15593258211059317. [CrossRef] [Google Scholar]
  • Dalke C, Neff F, Bains SK, Bright S, Lord D, Reitmeir P, Rossler U, Samaga D, Unger K, Braselmann H, Wagner F, Greiter M, Gomolka M, Hornhardt S, Kunze S, Kempf SJ, Garrett L, Hölter SM, Wurst W, Rosemann M, Azimzadeh O, Tapio S, Aubele M, Theis F, Hoeschen C, Slijepcevic P, Kadhim M, Atkinson M, Zitzelsberger H, Kulka U, Graw J. 2018. Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiat. Environ. Biophys. 57(2): 99–113. [CrossRef] [PubMed] [Google Scholar]
  • Damjanov I. 1993. Teratocarcinoma: Neoplastic lessons about normal embryogenesis. Int. J. Dev. Biol. 37(1): 39–46. [Google Scholar]
  • Doss M. 2018. Are we approaching the end of the Linear No-Threshold era? J. Nucl. Med. 59: 1786–1793. [CrossRef] [PubMed] [Google Scholar]
  • EPA. 2005. Guidelines for carcinogen risk assessment. Washington, DC: U.S. Environmental Protection Agency. [Google Scholar]
  • French B, Sadakane A, Cologne J, Mabuchi K, Ozasa K, Preston DL. 2020. Misclassification of primary liver cancer in the Life Span Study of atomic bomb survivors. Int. J. Cancer 147(5): 1294–1299. [CrossRef] [PubMed] [Google Scholar]
  • Fujiki H, Sueoka E, Suganuma M. 2013. Tumor promoters: From chemicals to inflammatory proteins. J. Cancer Res. Clin. Oncol. 139: 1603–1614. [CrossRef] [PubMed] [Google Scholar]
  • Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K. 2013. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int. J. Cancer 132(5): 1222–1226. [CrossRef] [PubMed] [Google Scholar]
  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, Preston DL, Mabuchi K, Ozasa K. 2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958- 2009. Radiat. Res. 187: 513–537. [CrossRef] [PubMed] [Google Scholar]
  • Grant EJ, Yamamura M, Brenner AV, Preston DL, Utada M, Sugiyama H, Sakata R, Mabuchi K, Ozasa K. 2021. Radiation risks for the incidence of kidney, bladder and other urinary tract cancers:1958-2009. Radiat. Res. 195(2): 140–148. [Google Scholar]
  • Guéguen Y, Bontemps A, Ebrahimian TG. 2019. Adaptive responses to low doses of radiation or chemicals: Their cellular and molecular mechanisms. Cell. Mol. Life Sci. 76(7): 1255–1273. [CrossRef] [PubMed] [Google Scholar]
  • Hamasaki K, Imai K, Hayashi T, Nakachi K, Kusunoki Y. 2007. Radiation sensitivity and genomic instability in the hematopoietic system: Frequencies of micronucleated reticulocytes in whole body x-irradiated BALB/c and C57BL/6 mice. Cancer Sci. 98: 1840–1844. [CrossRef] [PubMed] [Google Scholar]
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell 144(5): 646–674. [CrossRef] [PubMed] [Google Scholar]
  • Hanahan D. 2022. Hallmarks of cancer: New dimensions. Cancer Discov. 12(1): 31–46. [CrossRef] [PubMed] [Google Scholar]
  • Harrison J, Haylock R, Jansen JTM, Zhang W, Wakeford R. 2023. Effective doses and risks from medical diagnostic X-ray examinations for male and female patients from childhood to old age. J. Radiol. Prot. 43(1). [Google Scholar]
  • Hauptmann M, Daniels RD, Cardis E, Cullings HM, Kendall G, Laurier D, Linet MS, Little MP, Lubin JH, Preston DL, Richardson DB, Stram DO, Thierry-Chef I, Schubauer-Berigan MK, Gilbert ES, Berrington de Gonzalez A. 2020. Epidemiological studies of low-dose ionizing radiation and cancer: Summary bias assessment and meta-analysis. J. Natl Cancer Inst. Monogr. 56: 188–200. [CrossRef] [PubMed] [Google Scholar]
  • Health Physics Society. 2020. Position Statement of the Health Physics Society PS010-4: Radiation Risk in Perspective. Health Phys. 118(1): 79–90. [CrossRef] [PubMed] [Google Scholar]
  • Hecker E. 1967. Phorbol esters from croton oil. Chemical nature and biological activities. Naturwissenschaften 54: 282–284. [CrossRef] [PubMed] [Google Scholar]
  • Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K. 2013. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors:1950-2001. Radiat. Res. 179(3): 361–82. [CrossRef] [PubMed] [Google Scholar]
  • IARC. 2018. Les cancers attribuables au mode de vie et à l’environnement en France métropolitaine. Lyon: International Agency for Research on Cancer. http://gco.iarc.fr/resources/paf-france_fr.php. [Google Scholar]
  • ICRP Publication 1. 1959. Recommendations of the International Commission on Radiological Protection. Oxford: Pergamon Press. [Google Scholar]
  • ICRP Publication 9. 1966. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 9: 9–26. [Google Scholar]
  • ICRP Publication 60. 1991. The 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21(1-3): 1–201. [CrossRef] [Google Scholar]
  • ICRP Publication 99. 2005. Low-dose extrapolation of radiation-related cancer risk. Ann. ICRP 35(4). [Google Scholar]
  • ICRP Publication 103. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 37(2-4): 1–332. [Google Scholar]
  • ICRP Publication 109.2009. The history of ICRP and the evolution of its policies. Ann. ICRP 39(1): 79–110. [Google Scholar]
  • ICRP Publication 115. 2010. Lung cancer risk from radon and progeny and statement on radon. Ann. ICRP 40: 1–64. [Google Scholar]
  • ICRP Publication 138. 2018. Ethical foundations of the system of radiological protection. Ann. ICRP 47(1). [Google Scholar]
  • ICRP Publication 147. 2021a. Use of dose quantities in radiological protection. Ann. ICRP 50(1). [Google Scholar]
  • ICRP Publication 150. 2021b. Cancer risks from plutonium and uranium exposure. Ann. ICRP 50(4). [Google Scholar]
  • ICRP Publication 152. 2022. Radiation detriment calculation methodology. Ann. ICRP 51(3). [Google Scholar]
  • Jayalekshmi PA, Nair RA, Nair RRK, Hoel DG, Akiba S, Nakamura S, Endo K. 2021. Background radiation and cancer excluding leukemia in Kerala, India −Karunagappally cohort study. Radiat Environ. Med. 10: 74–81. [Google Scholar]
  • Laurier D, Clement C. 2021. Dose and risk: Science and protection. Ann. ICRP 50(1): 5–7. [CrossRef] [PubMed] [Google Scholar]
  • Laurier D, Rühm W, Paquet F, Applegate K, Cool D, Clement C, International Commission on Radiological Protection (ICRP). 2021. Areas of research to support the system of radiological protection. Radiat. Environ. Biophys. 60(4): 519–530. [CrossRef] [PubMed] [Google Scholar]
  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A. 2015. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): An international cohort study. Lancet Haematol. 2(7): e276–e281. [CrossRef] [Google Scholar]
  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, Haylock R, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A, Laurier D. 2021. Risk of cancer associated with low-dose radiation exposure: comparison of results between the INWORKS nuclear workers study and the A-bomb survivors study. Radiat. Environ. Biophys. 60(1): 23–39. [CrossRef] [PubMed] [Google Scholar]
  • Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A. 2009. Risks associated with low doses and low dose rates of ionizing radiation: Why linearity may be (almost) the best we can do. Radiology 251(1): 6–12. [CrossRef] [PubMed] [Google Scholar]
  • Little MP, Wakeford R, Borrego D, French B, Zablotska LB, Adams MJ, Allodji R, de Vathaire F, Lee C, Brenner AV, Miller JS, Campbell D, Pearce MS, Doody MM, Holmberg E, Lundell M, Sadetzki S, Linet MS, Berrington de González A. 2018. Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematol. 5(8): e346–e358. [CrossRef] [Google Scholar]
  • Little MP, Wakeford R, Bouffler SD, Abalo K, Hauptmann M, Hamada N, Kendall GM. 2022. Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. Environ. Int. 159: 106983. [CrossRef] [Google Scholar]
  • Lowe D, Roy L, Rühm W, Tabocchini MA, Wakeford R, Woloschak G, Laurier D. 2022. Dose rate effects: what is new and what is needed? Radiat. Environ. Biophys. 61(4): 507–543. [CrossRef] [PubMed] [Google Scholar]
  • Luan FJ, Wan Y, Mak KC, Ma CJ, Wang HQ. 2020. Cancer and mortality risks of patients with scoliosis from radiation exposure: A systematic review and meta- analysis. Eur. Spine J. 29(12): 3123–3134. [CrossRef] [PubMed] [Google Scholar]
  • Lubin JH, Adams MJ, Shore R, Holmberg E, Schneider AB, Hawkins MM, Robison LL, Inskip PD, Lundell M, Johansson R, Kleinerman RA, de Vathaire F, Damber L, Sadetzki S, Tucker M, Sakata R, Veiga LHS. 2017. Thyroid cancer following childhood low-dose radiation exposure: a pooled analysis of nine cohorts. J. Clin. Endocrinol. Metab. 102(7): 2575–2583. [CrossRef] [PubMed] [Google Scholar]
  • Mabuchi K, Preston DL, Brenner AV, Sugiyama H, Utada M, Sakata R, Sadakane A, Grant EJ, French B, Cahoon EK, Ozasa K. 2021. Risk of prostate cancer incidence among atomic bomb survivors: 1958-2009. Radiat. Res. 195(1): 66–76. [Google Scholar]
  • Meinhold CB, Taschner JC. 1995. A brief history of radiation. Los Alamos Science 23: 116–123. [Google Scholar]
  • Marant-Micallef C, Shield KD, Jérôme Vignat J, Hill C, Rogel A, Menvielle G, Dossus L, Ormsby JN, Rehm J, Rushton L, Vineis P, Parkin M, Bray F, Soerjomataram I. 2018a. Approche et méthodologie générale pour l’estimation des cancers attribuables au mode de vie et à l’environnement en France métropolitaine en 2015. Bulletin Epidémiologique Hebdomadaire 21: 432–441. [Google Scholar]
  • Marant-Micallef C, Shield KD, Jérôme Vignat J, Hill C, Rogel A, Menvielle G, Dossus L, Ormsby JN, Rehm J, Rushton L, Vineis P, Parkin M, Bray F, Soerjomataram I. 2018b. Nombre et fractions de cancers attribuables au mode de vie et à l’environnement en France métropolitaine en 2015 : résultats principaux. Bulletin Epidémiologique Hebdomadaire 21: 442–448. [Google Scholar]
  • Markiewicz E, Barnard S, Haines J, Coster M, van Geel O, Wu W, Richards S, Ainsbury E, Rothkamm K, Bouffler S, Quinlan RA. 2015. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol. 5(4): 150011. [CrossRef] [Google Scholar]
  • Mitchel REJ, Jackson JS, McCann RA, Boreham DR. 1999. The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat. Res. 152(3): 273–279. [CrossRef] [Google Scholar]
  • Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, Dai J, Hartley SW, Schonfeld SJ, Sampson JN, Maruvka YE, Kapoor V, Ramsden DA, Carvajal-Garcia J, Perou CM, Parker JS, Krznaric M, Yeager M, Boland JF, Hutchinson A, Hicks BD, Dagnall CL, Gastier-Foster JM, Bowen J, Lee O, Machiela MJ, Cahoon EK, Brenner AV, Mabuchi K, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Hatch M, Berrington de Gonzalez A, Thomas GA, Tronko MD, Getz G, Chanock SJ. 2021. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science 372(6543): eabg2538. [CrossRef] [PubMed] [Google Scholar]
  • Muller HJ. 1928. Artificial transmutation of the gene. Science 66: 84–7. [Google Scholar]
  • NAS. 1956. The biological effects of atomic radiation (BEAR): A report to the public. Washington DC: The National Academies Press, National Academy of Sciences / National Research Council. [Google Scholar]
  • NAS. 2006. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington DC: The National Academies Press, National Academy of Sciences / National Research Council. [Google Scholar]
  • NASEM. 2022. Leveraging advances in modern science to revitalize low-dose radiation research in the United States. Washington, DC: The National Academies Press, National Academies of Sciences, Engineering, and Medicine. https://doi.org/10.17226/26434. [Google Scholar]
  • NCRP. 2018. Implications of recent epidemiologic studies for the linear-nonthreshold model and radiation protection. NCRP Commentary No. 27. Bethesda, MD: National Council on Radiation Protection and Measurements. [Google Scholar]
  • NCRP. 2020. Approaches for integrating information from radiation biology and epidemiology to enhance low-dose health risk assessment. NCRP Report No. 186. Bethesda, MD: National Council on Radiation Protection and Measurements. [Google Scholar]
  • NRC. 2021. Linear No-Threshold model and standards for protection against radiation. A proposed rule by the Nuclear Regulatory Commission on 08/17/2021. Federal Register 86. https://www.federalregister.gov/documents/2021/08/17/2021-17475/linear-no-threshold-model-and-standards-for-protection-against-radiation. [Google Scholar]
  • Osipov AN, Pustovalova M, Grekhova A, Eremin P, Vorobyova N, Pulin A, Zhavoronkov A, Roumiantsev S, Klokov DY, Eremin I. 2015. Low doses of X-rays induce prolonged and ATM-independent persistence of gammaH2AX foci in human gingival mesenchymal stem cells. Oncotarget 6(29): 27275–27287. [CrossRef] [PubMed] [Google Scholar]
  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. 2012. Studies of the mortality of atomic bomb survivors, report 14, 1950-2003: An overview of cancer and noncancer diseases. Radiat. Res. 177(3): 229–243. [Google Scholar]
  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10(15): 886–895. [CrossRef] [Google Scholar]
  • Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Leuraud K, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A. 2015. Risk of cancer from occupational exposure to ionising radiation: Retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ 351: h5359. [CrossRef] [PubMed] [Google Scholar]
  • Richardson DB, Cardis E, Daniels RD, Gillies M, Haylock R, Leuraud K, Laurier D, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A. 2018. Site-specific solid cancer mortality after exposure to ionizing radiation: A cohort study of workers (INWORKS). Epidemiol. 29(1): 31–40. [CrossRef] [PubMed] [Google Scholar]
  • Rivina L, Schiestl R. 2013. Mouse models of radiation-induced cancers. Adv. Genet. 84: 83–122. [CrossRef] [Google Scholar]
  • Rithidech KN, Cronkite EP, Bond VP. 1999. Advantages of the CBA mouse in leukemogenesis research. Blood Cells, Molecules & Diseases 25(1): 38–45. [CrossRef] [PubMed] [Google Scholar]
  • Rube CE, Dong X, Kuhne M, Fricke A, Kaestner L, Lipp P, Rube C. 2008. DNA double-strand break rejoining in complex normal tissues. Int. J. Radiat. Oncol. Biol. Physics 72(4): 1180–1187. [CrossRef] [Google Scholar]
  • Rühm W, Eidemuller M, Kaiser JC. 2017. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int. J. Radiat. Biol. 93(10): 1093–1117. [CrossRef] [PubMed] [Google Scholar]
  • Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. 2015. Dose and dose-rate effects of ionizing radiation: A discussion in the light of radiological protection. Radiat. Environ. Biophys. 54(4): 379–401. [CrossRef] [PubMed] [Google Scholar]
  • Rühm W, Laurier D, Wakeford R. 2022. Cancer risk following low doses of ionizing radiation − Current epidemiological evidence and implications for radiological protection. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 873: 503436. [CrossRef] [Google Scholar]
  • Sakata R, Preston DL, Brenner AV, Sugiyama H, Grant EJ, Rajaraman P, Sadakane A, Utada M, French B, Cahoon EK, Mabuchi K, Ozasa K. 2019. Radiation-related risk of cancers of the upper digestive tract among Japanese atomic bomb survivors. Radiat. Res. 192(3): 331–344. [CrossRef] [PubMed] [Google Scholar]
  • Schubauer-Berigan MK, Berrington de Gonzalez A, Cardis E, Laurier D, Lubin JH, Hauptmann M, Richardson DB. 2020. Evaluation of confounding and selection bias in epidemiological studies of populations exposed to low-dose, high-energy photon radiation. J. Natl Cancer Inst. Monogr. 56: 133–153. [CrossRef] [PubMed] [Google Scholar]
  • Scott BR, Tharmalingam S. 2019. The LNT model for cancer induction is not supported by radiobiological data. Chem. Biol. Interact. 301: 34–53. [CrossRef] [Google Scholar]
  • Shimura N, Kojima S. 2018. The lowest radiation dose having molecular changes in the living body. Dose Response 1–17. [Google Scholar]
  • Shin SC, Kang YM, Kim HS. 2010. Life span and thymic lymphoma incidence in high- and low-dose-rate irradiated AKR/J mice and commonly expressed genes. Radiat. Res. 174(3): 341–346. [CrossRef] [PubMed] [Google Scholar]
  • Shore R, Beck HL, Boice JD, Caffrey EA, Davis A, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, Walsh L, Dauer LT. 2018. Implications of recent epidemiological studies for the linear non threshold model and radiation protection. J. Radiol. Prot. 38: 1217. [CrossRef] [PubMed] [Google Scholar]
  • Shore R, Walsh L, Azizova T, Rühm W. 2017. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor. Int. J. Radiat. Biol. 93: 1064–1078. [CrossRef] [PubMed] [Google Scholar]
  • Snijders AM, Marchetti F, Bhatnagar S, Duru N, Han J, Hu Z, Mao JH, Gray JW, Wyrobek AJ. 2012. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility. PLoS ONE 7: e45394. [CrossRef] [PubMed] [Google Scholar]
  • Sugiyama H, Misumi M, Brenner A, Grant EJ, Sakata R, Sadakane A, Utada M, Preston DL, Mabuchi K, Ozasa K. 2020. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958- 2009. Int. J. Cancer 146(3): 635–645. [CrossRef] [PubMed] [Google Scholar]
  • Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. 2019. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem. Biol. Interact. 301: 54–67. [CrossRef] [Google Scholar]
  • Tran V, Little MP. 2017. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation. Radiat. Environ. Biophys. 56(4): 299–328. [CrossRef] [PubMed] [Google Scholar]
  • Trosko JE. 2021. On the potential origin and characteristics of cancer stem cells. Carcinogenesis 42(7): 905–912. [CrossRef] [PubMed] [Google Scholar]
  • Tsvetkova A, Ozerov IV, Pustovalova M, Grekhova A, Eremin P, Vorobyeva N, Eremin I, Pulin A, Zorin V, Kopnin P, Leonov S, Zhavoronkov A, Klokov D, Osipov AN. 2017. GammaH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal stem cells during prolonged X-ray irradiation. Oncotarget 8(38): 64317–64329. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M, Aurengo A, Averbeck D, Bonnin A, Le Guen B, Masse R, Monier R, Valleron AJ, de Vathaire F. 2005. La relation dose-effet et l’estimation des effets cancérogènes des faibles doses de rayonnements ionisants. Paris: Académie des Sciences / Académie Nationale de Médecine. [Google Scholar]
  • Tubiana M, Aurengo A, Averbeck D, Masse R. 2006. Recent reports on the effect of low doses of ionizing radiation and its dose-effect relationship. Radiat. Environ. Biophys. 44(4): 245–251. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M, Masse R, de Vathaire F, Averbeck D, Aurengo A. 2007. La controverse sur les effets des faibles doses de rayonnements ionisants et la relation linéaire sans seuil. Radioprotection 42: 133–161. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tubiana M, Feinendegen LE, Yang C, Kaminski M. 2009. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251: 13–22. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR. 2008. Effects of ionizing radiation. UNSCEAR 2006 Report to the General Assembly, with scientific annexes. Volume I. Annex A. Epidemiological studies of radiation and cancer. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/en/publications/scientific-reports.html. [Google Scholar]
  • UNSCEAR. 2012. Biological mechanisms of radiation actions at low doses. A white paper to guide the Scientific Committee’s future programme of work. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/en/publications/scientific-reports.html. [Google Scholar]
  • UNSCEAR. 2015. Sources, effects and risks of ionizing radiation. UNSCEAR 2012 Report to the General Assembly, with Scientific Annexes. Annex A: Attributing health effects to ionizing radiation exposure and inferring risks. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/en/publications/scientific-reports.html. [Google Scholar]
  • UNSCEAR. 2018a. Sources, effects and risks of ionizing radiation. UNSCEAR 2017 Report to the General Assembly, with Scientific Annexes. Annexe A, Principles and criteria for ensuring the quality of the Committee’s reviews of epidemiological studies of radiation exposure. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2017_Annex-A.pdf. [Google Scholar]
  • UNSCEAR. 2018b. Sources, effects and risks of ionizing radiation. UNSCEAR 2017 Report to the General Assembly, with Scientific Annexes. Annexe B, Epidemiological studies of cancer risk due to low-dose-rate radiation from environmental sources. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2017_Annex-B.pdf. [Google Scholar]
  • UNSCEAR. 2020a. Sources, effects and risks of ionizing radiation. UNSCEAR 2019 Report to the General Assembly, with Scientific Annexes. Annex A, Evaluation of selected health effects and inference of risk due to radiation exposure. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2019_Annex-A-CORR.pdf. [Google Scholar]
  • UNSCEAR. 2020b. Sources, effects and risks of ionizing radiation. UNSCEAR 2019 Report to the General Assembly, with Scientific Annexes. Annex B, Lung cancer from exposure to radon. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2019_Annex-B.pdf. [Google Scholar]
  • UNSCEAR. 2021. Sources, effects and risks of ionizing radiation. UNSCEAR 2020/2021 Report to the General Assembly, with Scientific Annexes. Volume III. Scientific Annex C. Biological mechanisms relevant for the inference of cancer risks from low-dose and low-dose-rate radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. https://www.unscear.org/unscear/en/publications/scientific-reports.html. [Google Scholar]
  • Utada M, Chernyavskiy P, Lee WJ, Franceschi S, Sauvaget C, de Gonzalez AB, Withrow DR. 2019. Increasing risk of uterine cervical cancer among young Japanese women: Comparison of incidence trends in Japan, South Korea and Japanese-Americans between 1985 and 2012. Int. J. Cancer 144(9): 2144–2152. [CrossRef] [PubMed] [Google Scholar]
  • Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Kato N, Grant EJ, Cahoon EK, Mabuchi K, Ozasa K. 2021. Radiation risk of ovarian cancer in atomic bomb survivors: 1958-2009. Radiat. Res. 195(1): 60–65. [Google Scholar]
  • van Gent DC, Hoeijmakers JH, Kanaar R. 2001. Chromosomal stability and the DNA double-stranded break connection.Nature Reviews Genet. 2(3): 196–206. [CrossRef] [PubMed] [Google Scholar]
  • Vaux DL. 2011. In defense of the somatic mutation theory of cancer. Bioassays 33(5): 341–343. [CrossRef] [PubMed] [Google Scholar]
  • Vineis P, Schatzkin A, Potter JD. 2010. Models of carcinogenesis: An overview. Carcinogenesis 31(10): 1703–1709. [CrossRef] [PubMed] [Google Scholar]
  • Vuillez JP. 2019. Faibles doses de rayonnements : quand l’hormésis et l’effet abscopal se rencontrent. Med. Nucl. 43(5-6): 354–359. [Google Scholar]
  • Wakeford R. 2005. The risk to health from exposure to low levels of ionizing radiation. Ann. ICRP 35(4): v–vii. [CrossRef] [PubMed] [Google Scholar]
  • Wojcik A. 2022. Reflections on effects of low doses and risk inference based on the UNSCEAR 2021 report on ’biological mechanisms relevant for the inference of cancer risks from low-dose and low-dose-rate radiation’. J. Radiol. Prot. 42(2). [Google Scholar]
  • Zaharieva EK, Sasatani M, Kamiya K. 2022. Kinetics of DNA repair under chronic irradiation at low and medium dose rates in repair proficient and repair compromised normal fibroblasts. Radiat. Res. 197(4): 332–349. [Google Scholar]
  • Zanzonico PB. 2016. The neglected side of the coin: Quantitative benefit-risk analyses in medical imaging. Health Phys. 110: 301–4. [CrossRef] [PubMed] [Google Scholar]
  • Zhang W, Laurier D, Cléro E, Hamada N, Preston D, Vaillant L, Ban N. 2020. Sensitivity analysis of parameters and methodological choices used in calculation of radiation detriment for solid cancer. Int. J. Radiat. Biol. 96(5): 596–605. [CrossRef] [PubMed] [Google Scholar]
  • Zhu S, Wang J, Zellmer L, Xu N, Liu M, Hu Y, Ma H, Deng F, Yang W, Liao DJ. 2022. Mutation or not, what directly establishes a neoplastic state, namely cellular immortality and autonomy, still remains unknown and should be prioritized in our research. J. Cancer 1(9): 2810–2843. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.