Free Access
Issue
Radioprotection
Volume 59, Number 2, April - June
Page(s) 80 - 87
DOI https://doi.org/10.1051/radiopro/2023039
Published online 03 June 2024
  • Arnold J, Duval M, Falguères C, Bahain J, Demuro M. 2012. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: suitability assessments for luminescence and electron spin resonance dating applications. Radiat Meas 47 (1): 6–18. [CrossRef] [Google Scholar]
  • Baeza A, Corbacho JA. 2005. Comparative analysis of the in and ex situ determination of environmental radiation and dosimetry levels. Radiat Prot Dosim 113 (1): 90–98. [CrossRef] [PubMed] [Google Scholar]
  • Baeza J, Valencia D, Baeza A. 2018. Use of drones for remote management of the close measure of radioactivity sources. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium 7914–7917. [Google Scholar]
  • Beck HL, Gogolak C, DeCampo J. 1972. In situ Ge (Li) and NaI (T1) gamma-ray spectrometry (No. HASL-258). CM-P 00066834. [Google Scholar]
  • Bednář D, Otáhal P, Nemecek L, Gerslova E. 2021. The analytical approach of Drone use in radiation monitoring. Radioprotection 56 (1): 61–67. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bevelacqua JJ. 2004. Point source approximations in health physics. Radiat Prot Manag 21 (5): 9–13. [Google Scholar]
  • Casanovas R, Prieto E, Salvadó M. 2016. Calculation of the ambient dose equivalent H*(10) from gamma-ray spectra obtained with scintillation detectors. Appl Radiat Isot 118: 154–159. [CrossRef] [PubMed] [Google Scholar]
  • Chen C, Sinclair L, Fortin R, Coyle M, Samson C. 2020. In-flight performance of the advanced radiation detector for UAV operations (ARDUO). Nucl Instrum Methods Phys Res Sect A 954: 161609. [Google Scholar]
  • CSN (2009). Informe de evaluación sobre la gestión de los residuos de los antiguos terrenos industriales “El Hondón” (CSN/JEV/ ARBM/ GENERJ0609/512) Consejo de Seguridad Nuclear. (In Spanish) [Google Scholar]
  • Currie LA. 1968. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40: 586–593. [CrossRef] [Google Scholar]
  • Drombrowski H. 2014. Area dose rate values derived from NaI or LaBr3 spectra. Radiat Prot Dosim 160 (4): 269–276. [CrossRef] [PubMed] [Google Scholar]
  • Duch MA, Sáez-Vergara JC, Ginjaume M, Gómez C, González-Leitón AM, Herrero J, Salas R. 2008. Long-term intercomparison of Spanish environmental dosimetry services. Study of transit dose estimations. Radiat Meas 43 (2-6): 576–579. [CrossRef] [Google Scholar]
  • Falciglia PP, Biondi L, Catalano R, Immè G, Romano S, Vagliasindi FG. 2018. Preliminary investigation for quali-quantitative characterization of soils contaminated with 241Am and 152Eu by low-altitude unmanned aerial vehicles (UAVs) equipped with small size ?-ray spectrometer: detection efficiency and minimum detectable activity (MDA) concentration assessment. J Soils Sediments 18: 2399–2409. [CrossRef] [Google Scholar]
  • IAEA (2005). Safety Standards for protecting people and the environment No. RS-G-1.9. Categorization of Radioactive Sources. Vienna. [Google Scholar]
  • ICRU Report 53 (1994). Gamma-ray spectrometry in the environment. Bethesda. USA. [Google Scholar]
  • Ji YY, Lim T, Choi HY, Chung KH, Kang MJ. 2019. Development and performance of a multipurpose system for the environmental radiation survey based on a LaBr3(Ce) detector. IEEE Trans Nucl Sci 66 (12): 2422–2429. [CrossRef] [Google Scholar]
  • Katreiner H, Horváth Á, Fanni Vörös MP, Tóth S, Várhegyi A, Kovács B. 2022. Mapping gamma dose rates of an area with elevated natural radioactivity using a drone-mounted safecast sensor. Proceedings Vol.2, 8th International Conference on Cartography and GIS, 20–25 June 2022, Nessebar, Bulgaria. [Google Scholar]
  • Knoll GF. 2010. Radiation detection and measurement. John Wiley&Sons. [Google Scholar]
  • Lee C, Kim HR. 2019. Optimizing UAV-based radiation sensor systems for aerial surveys. J Environ Radioact 204: 76–85. [CrossRef] [PubMed] [Google Scholar]
  • Lemercier M, Gurriaran R, Bouisset P, Cagnat X. 2008. Specific activity to H*(10) conversion coefficients for in situ gamma spectrometry. Radiat Prot Dosim 128 (1): 83–89. [Google Scholar]
  • Mabit L, Bernard C. 2007. Assessment of spatial distribution of fallout radionuclides through geostatistics concept. J Environ Radioact 97 (2-3): 206–219. [CrossRef] [PubMed] [Google Scholar]
  • Nir-El Y, Haquin G. 2001. Minimum detectable activity in in situ ?-ray spectrometry. Appl Radiat Isot 55 (2): 197–203. [CrossRef] [PubMed] [Google Scholar]
  • Pinto LR, Vale A, Brouwer Y, Borbinha J, Corisco J, Ventura R, Gonçalves B. 2021. Radiological scouting, monitoring and inspection using drones. Sensors 21 (9): 3143. [CrossRef] [PubMed] [Google Scholar]
  • Pöllänen R, Toivonen H, Peräjärvi K, Karhunen T, Ilander T, Lehtinen J, Juusela M. 2009. Radiation surveillance using an unmanned aerial vehicle. Appl Radiat Isot 67 (2): 340–344. [CrossRef] [PubMed] [Google Scholar]
  • Reginatto M. 2010. Overview of spectral unfolding techniques and uncertainty estimation. Radiat Meas 45 (10): 1323–1329. [CrossRef] [Google Scholar]
  • Ritter S. 2021. Detection limits of NaI scintillator detector based aerial source detection systems. arXiv preprint arXiv:2111.07756 [Google Scholar]
  • Rusňák J, Šurán J, Šolc J, Kovár P, Bohuslav P, Nohýl J. 2023. Emergency unmanned airborne spectrometric (HPGe) monitoring system. Appl Radiat Isot 194: 110677. [CrossRef] [PubMed] [Google Scholar]
  • Rybach L, Medici F, Schwarz, GF. 1997. Construction of radioele-ment and dose rate baseline maps by combining ground and airborne radiometric data (No. IAEA-TECDOC—980). [Google Scholar]
  • Šálek O, Matolín M, Gryc L. 2018. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry. J Environ Radioact 182: 101–107. [CrossRef] [PubMed] [Google Scholar]
  • Sanada Y, Torii T. 2015. Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter. J Environ Radioact 139: 294–299. [CrossRef] [PubMed] [Google Scholar]
  • Toivonen H, Vesterbacka K, Pelikan A. 2008. LaBr3 spectrometry for environmental monitoring. IRPA 12: 12 International congress of the International Radiation Protection Association (IRPA): Strengthening radiation protection worldwide, Argentina: SAR. [Google Scholar]
  • Towler J, Krawiec B, Kochersberger K. 2012. Radiation mapping in post-disaster environments using an autonomous helicopter. Remote Sens 4 (7): 1995–2015. [CrossRef] [Google Scholar]
  • Tyler AN. 2004. High accuracy in situ radiometric mapping. J Environ Radioact 72 (1-2): 195–202. [CrossRef] [PubMed] [Google Scholar]
  • Tyler AN. 2008. In situ and airborne gamma-ray spectrometry. Radioact Environ 11: 407–448. [CrossRef] [Google Scholar]
  • Vale A, Ventura R, Carvalho P. 2017. Application of unmanned aerial vehicles for radiological inspection. FusionEngDes 124: 492–495. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.