Open Access
Issue
Radioprotection
Volume 57, Number 4, October - December 2022
Page(s) 289 - 304
DOI https://doi.org/10.1051/radiopro/2022030
Published online 07 December 2022
  • American Academy of Clinical Toxicology & European Association of Poisons Centres and Clinical Toxicologists. 2004. Position paper: Cathartics. J. Toxicol. Clin Toxicol. 42(3): 243–253. [Google Scholar]
  • Autorité de sûreté nucléaire (ASN). 2008. Guide national. Intervention médicale en cas d́évènement nucléaire ou radiologique, Version V 3.6. Paris: Autorité de sûreté nucléaire. Available from https://professionnels.asn.fr/Installations-nucleaires/Guides-de-l-ASN-domaine-des-dechets-radioactifs-et-du-demantelement/Guide-national-d-intervention-medicale-en-cas-d-evenement-nucleaire-ou-radiologique. [Google Scholar]
  • Beck HL, Bouville A, Moroz BE, Simon SL. 2010. Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests. Health. Phys. 99: 124–142. [Google Scholar]
  • Bertho J-M, Gabillaud-Poillion F, Reuter C, Riviere O. 2022. Comparative study of nuclear post-accident management doctrines in Europe and North America. Radioprotection 57(1): 9–16. [Google Scholar]
  • Birchall A, Puncher M, Marsh JW, Davis K, Bailey MR, Jarvis NS. 2007. IMBA Professional Plus: a flexible approach to internal dosimetry. Radiat. Prot. Dosim. 125(1-4): 194–197. [Google Scholar]
  • Blaxell V. 2014. Yellow blood: hepatitis C and the modernist settlement in Japan. Asia. Pac. J. 12(18): 1–19. Available from https://www.academia.edu/6960546/Yellow_Blood_Hepatitis_C_and_the_Modernist_Settlement_in_Japan. [Google Scholar]
  • Buddemeier BR. 2018. Nuclear detonation fallout: Key considerations for internal exposure and population monitoring. Report LLNL-TR-754319. Contract DE-AC52-07NA27344. Livermore, CA: Lawrence Livermore National Laboratory. [Google Scholar]
  • Cheng JC, Liu MC, Tsai SY, Fang WT, Jian JJM, Sung JL. 2004. Unexpectedly frequent hepatitis B reactivation by chemoradiation in postgastrectomy patients. Cancer 101: 2126–2133. [CrossRef] [PubMed] [Google Scholar]
  • Chung H, Ueda T, Kudo M. 2010. Changing trends in hepatitis C infection over the past 50 years in Japan. Intervirology 53: 39–43. [CrossRef] [PubMed] [Google Scholar]
  • Chung KP, Chang HT, Lo SC, Chang LY, Lin SY, Cheng A, Huang YT, Chen CC, Lee MR, Chen YJ, Hou HH, Hsu CL, Jerng JS, Ho CC, Huang MT, Yu CJ, Yang PC. 2015. Severe lymphopenia is associated with elevated plasma interleukin-15 levels and increased mortality during severe sepsis. Shock 43: 569–575. [Google Scholar]
  • Conard RA, Paglia DE, Larsen PR, Sutow WW, Dobyns BM, Robbins J, Krotosky WA, Field JB, Rall JE, Wolff J. 1980. Review of medical findings in a Marshallese population 26 years after an accidental exposure to radioactive fallout. Contract No DE-AC02-76CH00016 with the United States Department of Energy. Upton New York: Medical Department, Brookhaven National Laboratory. [Google Scholar]
  • Conard RA. 1992. Fallout. The experiences of a medical team in the care of a Marshallese population accidentally exposed to fallout radiation. Contract No DE-AC02-76CH00016 with the United States Department of Energy. Upton New York: Medical Department, Brookhaven National Laboratory. Available from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/24/037/24037958.pdf. [CrossRef] [Google Scholar]
  • Cronkite EP, Bond VP, Browning LE, Chapman WH, Cohn SH, Conard RA, Dunham CL, Farr RS, Hall WS, Sharp R, Shulman NR. 1954. Study of response of human beings accidentally exposed to significant fallout radiation. Report to the Scientific Director. Operation Castle-Final report project 4.1. San Francisco, California: Naval Medical Research Institute; Bethesda, Maryland and U.S. Naval Radiological Defense Laboratory. [Google Scholar]
  • Derendorf H, Garrett ER. 1987. Pharmakokinetik. Einführung in die Theorie und Relevanz für die Arzneimitteltherapie. Stuttgart: Wissenschaftliche Verlagsgesellschaft. [Google Scholar]
  • Eder S, Hermann C, Lamkowski A, Kinoshita M, Yamamoto T, Abend M, Shinomiya N, Port M, Rump A. 2020. A comparison of thyroidal protection by stable iodine or perchlorate in the case of acute or prolonged radioiodine exposure. Arch. Toxicol. 94: 3231–3247. [Google Scholar]
  • Fliedner TM, Friesecke I, Beyrer K. 2001. Medical management of radiation accidents: Manual on the acute radiation syndrome. London: British Institute of Radiology. [Google Scholar]
  • Flynn DF, Goans RE. 2012. Triage and treatment of radiation and combined-injury mass casualties. In: Medical consequences of radiological and nuclear weapons. Textbooks of military medicine (A.B. Mickelson, Ed.), pp. 39–72. Fort Detrick, MD: Office of The Surgeon General United States Army. [Google Scholar]
  • Fong FH Jr. 2007. Nuclear detonations: evaluation and response. In: Disaster Medicine, 2nd ed (D.E. Hogan, J.L. Burstein, Eds.), pp. 378–401. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Wolters Kluwer, Lippincott Williams & Wilkins. [Google Scholar]
  • Friesecke I, Beyrer K, Wedel R, Reimers K, Fliedner TM. 2000. SEARCH: a system for evaluation and archiving of radiation accidents based on case histories. Radiat. Environ. Biophys. 39: 213–217. [Google Scholar]
  • Gersten O, Wilmoth JR. 2002. The cancer transition in Japan since 1951. Demogr. Res. 7: 271–306. Available from www.demographic-research.org/Volumes/Vol7/5/. [Google Scholar]
  • Glasstone S, Dolan PJ. 1977. The effects of nuclear weapons, 3rd ed. Washington DC: United States Department of Defence and United States Department of Energy. [Google Scholar]
  • Greene JC. 1965. Fallout radiation exposure control (an introduction). Washington DC: Office of Civil Defense, Post attack Research Division. Available from https://apps.dtic.mil/sti/citations/AD0653475. [CrossRef] [Google Scholar]
  • Hagen GA, Ouellette RP, Chapman EM. 1967. Comparison of high and low dosage levels of 131-I in the treatment of thyrotoxicosis. N. Engl. J. Med. 277(11): 559–562. [Google Scholar]
  • Hall EJ, Giaccia AJ. 2019. Radiobiology for the radiologist. Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: Wolters Kluwer. [Google Scholar]
  • Henriksen T, Hole EO, Sagstuen E, Pettersen E, Malinen E, Edin NJ, Biophysics Group at the University of Oslo. 2014. Radiation and health. Oslo: University of Oslo, Faculty of Mathematics and Natural Sciences, Department of Physics. Available from http://www.mn.uio.no/fysikk/english/services/knowledge/radiation-and-health/. [Google Scholar]
  • Hirama T, Tanosaki S, Kandatsu S, Kuroiwa N, Kamada T, Tsuji H, Yamada S, Katoh H, Yamamoto N, Tsujii H, Suzuki G, Akashi M. 2003. Initial medical management of patients severely irradiated in the Tokaimura criticality accident. Brit. J. Radiol. 76: 246–253. [Google Scholar]
  • Hormann V, Fischer H. 2009. Materialsammlung zur internen Radiodekontamination von Personen. Vorhaben-Nr. 0046/07/BMS (UFOPLAN). Ressortforschungsberichte zur kerntechnischen Sicherheit und zum Strahlenschutz (BfS-RESFOR-18/09, urn:nbn:de:0221-2009082147). Bundesamt für Strahlenschutz, Salzgitter. [Google Scholar]
  • Ibrahim SA, Simon SL, Bouville A, Melo D, Beck HL. 2010. Alimentary tract absorption (f1 values. for radionuclides in local and regional fallout from nuclear tests. Health. Phys. 99: 233–251. [Google Scholar]
  • Ikai I, Arii S, Okazaki M, Okita K, Omata M, Kojiro M, Takayasu K, Nakanuma Y, Makuuchi M, Matsuyama Y, Monden M, Kudo M. 2007. Report of the 17th nationwide follow-up survey of primary liver cancer in Japan. Hepatol. Res. 37: 676–691. [Google Scholar]
  • Imaizumi M, Ohishi W, Nakashima E, Sera N, Neriishi K, Yamada M, Tatsukawa Y, Takahashi I, Fujiwara S, Sugino K, Ando T, Usa T, Kawakami A, Akahoshi M, Hida A. 2017. Thyroid dysfunction and autoimmune thyroid diseases among atomic bomb survivors exposed in childhood. J. Clin. Endocrinol. Metab. 102: 2516–2524. [Google Scholar]
  • Imanaka T, Hayashi G, Endo S. 2015. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J. Radiat. Res. 56: i56–i61. [Google Scholar]
  • International Commission on Radiological Protection (ICRP). 1979. Dosimetric model for the gastrointestinal tract. Ann. ICRP. 2: 30–34. [Google Scholar]
  • International Commission on Radiological Protection (ICRP). 1989. Age-dependent doses to members of the public from intake of radionuclides: Part 1: Ingestion dose coefficients. ICRP Publication 56. Ann. ICRP. 20(2). [Google Scholar]
  • International Commission on Radiological Protection (ICRP). 1993. Age-dependent doses to members of the public from intake of radionuclides. Part 2: Ingestion dose coefficients. ICRP Publication 67. Ann. ICRP. 23(3-4): 1–167. [Google Scholar]
  • Kato C. 1984. Before and after boarding the shunkotsumaru (俊コツ丸乗船前後). Japan Radioisotope Association. Isotope News (Special Issue: The Bikini case 30 years ago): 4–6. Available from https://www.jrias.or.jp/books/cat3/news/102.html (in Japanese). [Google Scholar]
  • Keiser TM. 2011. Improvement of a biokinetic model for cerium in humans by tracer kinetic studies. Doctoral Thesis, Department of Radiation Physics, Technical University of Munich, Munich. [Google Scholar]
  • Kim J, Jung Y. 2017. Radiation-induced liver disease: Current understanding and future perspectives. Exp. Mol. Med. 49: e359. Available from https://www.nature.com/articles/emm201785. [Google Scholar]
  • Kimura K, Ikeda N, Kimura K, Kawanishi H, Kimura M. 1956. Radiochemical analysis of the body of the late Mr. Kuboyama. Radioisotopes 4(2): 22–27. [Google Scholar]
  • Krenzelok EP, Keller R, Stewart RD. 1985. Gastrointestinal transit times of cathartics combined with charcoal. Ann. Emerg. Med. 14: 1152–1155. [Google Scholar]
  • Kumatori T, Ishihara T, Ueda T, Miyoshi K. 1965. Medical survey of Japanese exposed to fall-out radiation in 1954. A report after ten years. Chiba: National Institute of Radiological Sciences. [Google Scholar]
  • LeRoy GV. 1950. Hematology of atomic bomb casualties. AMA. Arch Intern. Med. 86(5): 691–710. [Google Scholar]
  • Lessard ET, Miltenberger RP, Conard RA, Musolino SV, Naidu JR, Moorthy A, Schopfer CJ. 1985. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954. Upton Long Island New York: Brookhaven National Laboratory. [Google Scholar]
  • List RJ. 1955. World-wide fallout from operation Castle. Washington DC: US Department of Commerce, Weather Bureau. [Google Scholar]
  • Liver Cancer Study Group of Japan (LCSGJ). 1990. Primary liver cancer in Japan. Clinicopathologic features and results of surgical treatment. Ann. Surg. 211: 277–287. [Google Scholar]
  • Matsunaga T, Kobayashi K. 2000. Sensitivity analysis on the effectiveness of iodine prophylaxis to reduce thyroid gland exposure in nuclear emergency. In: Proceedings of the 10th International Conference of the International Radiation Protection Association, P-11-307, May 14–19, Hiroshima. Available from https://www.irpa.net/irpa10/cdrom/00800.pdf. [Google Scholar]
  • Matsunaga T, Kobayashi K. 2001. Sensitivity analysis on the deposition of inhaled radioactive iodine and the effectiveness of iodine prophylaxis. Jpn. J. Health. Phys. 36(1): 31–44. [Google Scholar]
  • Miyoshi K, Kumatori T. 1956. Klinische und hämatologische Studien an Patienten, die durch den radioaktiven Aschenregen bei Bikini nach der Atombombenexplosion geschädigt wurden. In: Fünfter Kongress der Europäischen Gesellschaft für Hämatologie, Freiburg i. Br., 20–24. September 1955 (H. Begemann, Ed.), Springer, Berlin Heidelberg, pp. 49–53. [Google Scholar]
  • National Hurricane Center and Central Pacific Hurricane Center. 2021. Latitude/longitude distance calculator. National Oceanic and Atmospheric Center. Adapted from the Great Circle Calculator (E. Williams, Ed.) n.d. Available from https://www.nhc.noaa.gov/gccalc.shtml (accessed on 10/01/2021). [Google Scholar]
  • Neuvonen PJ, Olkkola KT. 1986. Effect of purgatives on antidotal efficacy of oral activated charcoal. Human. Toxicol. 5: 255–263. [Google Scholar]
  • Nishiwaki Y. 1961. Studies on the radioactive contamination due to nuclear detonations I–VI. Annual Report of the Nuclear Reactor Laboratory, Kinki University Vol.1. Available from https://www.osti.gov/etdeweb/servlets/purl/20780119. [Google Scholar]
  • Nishiwaki Y. 1984. The radioactivity study on the Lucky Dragon and the aftermath. The Bikini case and health physics (第五福竜丸の放射線調査とその後。ビキニ事件と保健物理). Japan Radioisotope Association. Isotope News (Special Issue: The Bikini case 30 years ago): 6–7. Available from https://www.jrias.or.jp/books/cat3/news/102.html (in Japanese). [Google Scholar]
  • Nishiwaki Y, Kawai H, Shono N, Fujita S, Matsuoka H, Fujiwara S, Hosoda T. 2000. Uncertainties under emergency conditions in Hiroshima and Nagasaki in 1945 and Bikini Accident in 1954. In: Proceedings of the 10th International Congress of the International Radiation Protection Association, Hiroshima, 14–18 May 2000, JP 11-206 Available from https://www.irpa.net/irpa10/cdrom/00280.pdf. [Google Scholar]
  • Ohashi S, Hashimoto K, Fukushima N, Tashiro K, Sugano H, Mori Y. 1955. Pathological findings in the fatal case (the late Mr. Kuboyama) of the radiation sickness caused by Bikini ashes (an intermediate report). Jpn. J. National Med. Serv. 9(1): 46–55. [Google Scholar]
  • Oishi M. 2011. The day the sun rose in the west: Bikini, the Lucky Dragon and I (English version, translator from Japanese: Richard H Minear). Honolulu: University of Hawaii Press. [Google Scholar]
  • Ostroumova E, Rozhko A, Hatch M, Furukawa K, Polyanskaya O, McConnell RJ, Nadyrov E, Petrenko S, Romanov G, Yauseyenka V, Drozdovitch V, Minenko V, Prokopovich A, Savasteeva I, Zablotska LB, Mabuchi K, Brenner AV. 2013. Measures of thyroid function among Belarusian children and adolescent exposed to iodine-131 from the accident at the Chernobyl nuclear plant. Environ. Health. Perspect. 121: 865–871. [Google Scholar]
  • Oughterson AW, Leroy GV, Liebow AA, Hammond EC, Barrett HL, Rosenbaum JD, Schneider BA. 1951. Medical effects of atomic bombs. The report of the Joint Commission for the Investigation of the Effects of the Atomic Bomb in Japan. Atomic Energy Commission Documents NP3038 and NP3040. Oak Ridge: Technical Information Service. United States Atomic Energy Commission. [Google Scholar]
  • Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. 1997. Treatment of Graves’s hyperthyroidism with radioiodine: Results of a prospective randomized study. Thyroid 7: 247–251. [Google Scholar]
  • Reiners C, Drozd V, Yamashita S. 2020. Hypothyroidism after radiation exposure: Brief narrative. J. Neural. Trans. 127: 1455–1466. [Google Scholar]
  • Reischauer EO. 1988. The Japanese today. Change and continuity. Tokyo: Charles E Tuttle Company. [Google Scholar]
  • Robbins J, Adams WH. 1996. Radiation effects in the Marshall Islands. Upton New York: Medical Department, Brookhaven National Laboratory. Available from https://www.semanticscholar.org/paper/Radiation-effects-in-the-Marshall-Islands-Robbins-Adams/c27d0494b79221ccd5046c1005aed74ed9cbe1de?tab=citations. [Google Scholar]
  • Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M. 2016. The impact of time on decorporation efficacy after a “dirty bomb” attack studied by simulation. Drug. Res. 66: 607–613. [Google Scholar]
  • Rump A, Stricklin D, Lamkowski A, Eder S, Abend M, Port M. 2017. The incorporation of radionuclides after wounding by a “dirty bomb”: The impact of time for decorporation efficacy and a model for cases of disseminated fragmentation wounds. Adv. Wound Care 6(1): 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Rump A, Eder S, Lamkowski A, Hermann C, Abend M, Port M. 2019. A quantitative comparison of the chemo- and radiotoxicity of uranium at different enrichment grades. Toxicol. Lett. 313: 159–168. [Google Scholar]
  • Rump A, Eder S, Hermann C, Lamkowski A, Kinoshita M, Yamamoto T, Abend M, Shinomiya N, Port M. 2021. A comparison of the protective efficacy of iodine and perchlorate against radioiodine exposure in Caucasians and Japanese. Arch. Toxicol. 95(7): 2335–2350. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241675/. [Google Scholar]
  • Rump A, Eder S, Hermann C, Lamkowski A, Kinoshita M, Yamamoto T, Take J, Abend M, Shinomiya N, Port M. 2022. Modeling principles of protective thyroid blocking. Int. J. Radiat. Biol. 98(5): 831–842. Available from https://www.tandfonline.com/doi/full/10.1080/09553002.2021.1987570. [Google Scholar]
  • Schneider T, Lochard J, Maître M, Ban N, Croüail P, Gallego E, Homma T, Kai M, Lecomte JF, Takamura N. 2021. Radiological protection challenges facing business activities affected by a nuclear accident: some lessons from the management of the accident at the Fukushima-Daiichi Nuclear Power Plant. Radioprotection 56(3): 181–192. [Google Scholar]
  • Shiougawa T. 1984. The radioactivity on the boat and the dose absorbed by the crew (船体の放射能と船員の被曝線量). Japan Radioisotope Association. Isotope News (Special Issue: The Bikini case 30 years ago): 7–8. Available from https://www.jrias.or.jp/books/cat3/news/102.html (in Japanese). [Google Scholar]
  • Simon SL, Bouville A, Land CE. 2006. Fallout from nuclear weapon tests and cancer risks. Am. Sci. 94: 48–57. [Google Scholar]
  • Simon SL, Bouville A, Land CE, Beck HL. 2010a. Radiation doses and cancer risks in the Marshall islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary. Health. Phys. 99: 105–123. [Google Scholar]
  • Simon SL, Bouville A, Melo D, Beck HL, Weinstock RM. 2010b. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses. Health. Phys. 99: 157–200. [Google Scholar]
  • Suhail ARD, Loutfi I, Al-Shoumer KAS. 2001. A mathematical model of optimized radioiodine-131 therapy of Graves’ hyperthyroidism. BMC. Nucl. Med. 1: 1. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC56607/. [Google Scholar]
  • Suito E, Tokiyama K, Uyeda N. 1956. Colloid morphological and crystalline studies of Bikini dust. Research in the effects and influences of the nuclear bomb test explosions. Tokyo: Japan Society for the Promotion of Science. [Google Scholar]
  • Toesca DAS, Ibragimov B, Koong AJ, Xing L, Koong AC, Chang DT. 2018. Strategies for prediction and mitigation of radiation-induced liver toxicity. J. Radiat. Res. 59(S1): i40–i49. [Google Scholar]
  • Vogelius IR, Bentzen SM, Maraldo MV, Petersen PM, Specht L. 2011. Risk factors for radiation-induced hypothyroidism: a literature-based meta-analysis. Cancer 117: 5250–5260. [CrossRef] [PubMed] [Google Scholar]
  • Waller EA, Stodilka RZ, Leach K, Prud’homme-Lalonde L. 2002. Literature survey on decorporation of radionuclides from the human body. Ottawa: Defence R&D Canada-Ottawa Technical Memorandum 2002-042. [Google Scholar]
  • Wohni T. 1995. External doses from radioactive fallout: Dosimetry and levels. Doktor ingenier thesis, Department of Physics, Norwegian Institute of Technology, University of Trondheim, Trondheim, Norway. Available from https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/008/28008834.pdf. [Google Scholar]
  • Yamamoto M. 2009. Half a century has passed since the nuclear tests on the Bikini Atoll: Present thoughts. Hiroshima: The Center for Peace Science. IPSHU Research Report Series 41: 39–54 (in Japanese). [Google Scholar]
  • Yan T, Lin GA, Wang MJ, Lamkowski A, Port M, Rump A. 2019. Pharmacological treatment of inhalation injury after nuclear or radiological incidents: The Chinese and German approach. Mil. Med. Res. 6(1): 10. Available from https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-019-0200-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.