Free Access
Issue
Radioprotection
Volume 52, Number 3, July-September 2017
Page(s) 177 - 187
DOI https://doi.org/10.1051/radiopro/2017020
Published online 04 August 2017
  • Akleyev AV, Kossenko MM, Silkina LA, et al. 1995. Health effects of radiation incidents in the southern Urals, Stem Cells 13(Suppl 1): 58–68. [PubMed] [Google Scholar]
  • Akleyev AV, Akushevich IV, Dimov GP, et al. 2010a. Early hematopoiesis inhibition under chronic radiation exposure in humans, Radiat. Environ. Biophys. 49: 281–291. [CrossRef] [Google Scholar]
  • Akleyev AV, Akushevich IV, Dimov GP, et al. 2010b. Early hematopoietic effects of chronic radiation exposure in humans, Health Phys. 99: 330–336. [CrossRef] [PubMed] [Google Scholar]
  • Anttila A, Leppänen A-P., Rissanen K, Ylipieti J. 2011. Concentrations of 137Cs in summer pasture plants that reindeer feed on in the reindeer management area of Finland, J. Environ. Radioact. 102: 659–666. [CrossRef] [PubMed] [Google Scholar]
  • Bandazhevsky YI. 2003. Chronic Cs-137 incorporation in children's organs, Swiss Med. Wkly. 133: 488–490. [PubMed] [Google Scholar]
  • Bauchinger M, Salassidis K, Braselmann H, et al. 1998. FISH-based analysis of stable translocations in a Techa River population, Int. J. Radiat. Biol. 73: 605–612. [CrossRef] [PubMed] [Google Scholar]
  • Bernhardsson C, Zvonova I, Raaf C, Mattsson S. 2011. Measurements of long-term external and internal radiation exposure of inhabitants of some villages of the Bryansk region of Russia after the Chernobyl accident, Sci. Total Environ. 409: 4811–4817. [CrossRef] [PubMed] [Google Scholar]
  • Bertho JM, Louiba S, Faure MC, et al. 2010. Biodistribution of (137)Cs in a mouse model of chronic contamination by ingestion and effects on the hematopoietic system, Radiat. Environ. Biophys. 49: 239–248. [CrossRef] [PubMed] [Google Scholar]
  • Bertho JM, Faure MC, Louiba S, et al. 2011. Influence on the mouse immune system of chronic ingestion of 137Cs, J. Radiol. Prot. 31: 25–39. [CrossRef] [PubMed] [Google Scholar]
  • Book SA, Spangler WL, Swartz LA. 1982. Effects of lifetime ingestion of 90Sr in beagle dogs, Radiat. Res. 90: 244–251. [CrossRef] [PubMed] [Google Scholar]
  • Burykina LN. 1962. The toxicology of radioactiove substances. Pergamon press. [Google Scholar]
  • Cardis E, Hatch M. 2011. The Chernobyl accident-an epidemiological perspective, Clin. Oncol. (R Coll Radiol.) 23: 251–260. [Google Scholar]
  • Cardis E, Kesminiene A, Ivanov V, et al. 2005. Risk of thyroid cancer after exposure to 131I in childhood, J. Natl. Cancer Inst. 97: 724–732. [CrossRef] [PubMed] [Google Scholar]
  • Carvalho RN, Arukwe A, Ait-Aissa S, et al. 2014. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol. Sci. 141: 218–233. [Google Scholar]
  • Cecchi X, Wolff D, Alvarez O, Latorre R. 1987. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle, Biophys. J. 52: 707–716. [CrossRef] [PubMed] [Google Scholar]
  • Chesser RK, Sugg DW, Lomakin MD, et al. 2000. Concentrations and dose rate estimates of 134,137-cesium and 90-strontium in small mammals at Chornobyl, Ukraine, Environ. Toxicol. Chem. 19: 305–312. [Google Scholar]
  • Chesser RK, Rodgers BE, Wickliffe JK, et al. 2001. Accumulation of 137-Cesium and 90-Strontium from abiotic and biotic sources in rodents at Chornobyl, Ukraine, Environ. Toxicol. Chem. 20: 1927–1935. [CrossRef] [PubMed] [Google Scholar]
  • Chumak A, Thevenon C, Gulaya N, et al. 2001. Monohydroxylated fatty acid content in peripheral blood mononuclear cells and immune status of people at long times after the Chernobyl accident, Radiat. Res. 156: 476–487. [CrossRef] [PubMed] [Google Scholar]
  • Clarke WJ, Palmer RF, Howard EB, Hackett PL, Thomas JM. 1970. Strontium-90: effects of chronic ingestion on farrowing performance of miniature swine, Science 169: 598–600. [CrossRef] [PubMed] [Google Scholar]
  • CODIRPA. 2012. Éléments de doctrine pour la gestion post-accidentelle d'un accident nucléaire. ASN (ed). Paris: ASN. [Google Scholar]
  • Cooper EL, Zeiller E, Ghods-Esphahani A, et al. 1992. Radioactivity in food and total diet samples collected in selected settlements in the USSR, J. Environ. Radioact. 17: 147–157. [CrossRef] [Google Scholar]
  • Cooper C, Fox KM, Borer JS. 2014. Ischaemic cardiac events and use of strontium ranelate in postmenopausal osteoporosis: a nested case-control study in the CPRD, Osteoporos. Int. 25: 737–745. [CrossRef] [PubMed] [Google Scholar]
  • Crepet A, Heraud F, Bechaux C, et al. 2013. The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to which the French population is exposed, Toxicol. 313: 83–93. [CrossRef] [Google Scholar]
  • Dam K, Bankl H, Mostbeck A. 1988. [Measurements of radiocesium incorporation in 250 deceased patients who died within a year following Chernobyl], Wien. Klin. Wochenschr. 100: 193–197. [PubMed] [Google Scholar]
  • Davis S, Day RW, Kopecky KJ, et al. 2006. Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station accident: results from an international collaborative population-based case-control study, Int. J. Epidemiol. 35: 386–396. [CrossRef] [PubMed] [Google Scholar]
  • De Ruig WG, van der Struijs T. 1992. Radioactive contamination of food sampled in the areas of the USSR affected by the Chernobyl disaster, Analyst 117: 545–548. [CrossRef] [PubMed] [Google Scholar]
  • Drozd VM, Saenko VA, Brenner AV, et al. 2015. Major Factors Affecting Incidence of Childhood Thyroid Cancer in Belarus after the Chernobyl Accident: Do Nitrates in Drinking Water Play a Role? PLoS One 10: e0137226. [CrossRef] [PubMed] [Google Scholar]
  • Dungworth DL, Goldman M, Switzer J, McKelvie DH. 1969. Development of a myeloproliferative disorder in beagles continuously exposed to 90Sr, Blood 34: 610–632. [Google Scholar]
  • FAO, FAO stats country indicators, http://www.fao.org/faostat/. Querry date [Google Scholar]
  • Gashchak S, Beresford NA, Maksimenko A, Vlaschenko AS. 2010. Strontium-90 and caesium-137 activity concentrations in bats in the Chernobyl exclusion zone, Radiat. Environ. Biophys. 49: 635–644. [CrossRef] [PubMed] [Google Scholar]
  • Gatseva PD, Argirova MD. 2008. High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas, Int. J. Hyg. Environ. Health 211: 555–559. [CrossRef] [PubMed] [Google Scholar]
  • Ghandhi SA, Weber W, Melo D, et al. 2015. Effect of 90Sr internal emitter on gene expression in mouse blood, BMC Genomics 16: 586. [CrossRef] [PubMed] [Google Scholar]
  • Grignard E, Gueguen Y, Grison S, Lobaccaro JM, Gourmelon P, Souidi M. 2008. In vivo effects of chronic contamination with 137cesium on testicular and adrenal steroidogenesis, Arch. Toxicol. 82: 583–589. [CrossRef] [PubMed] [Google Scholar]
  • Grison S, Martin JC, Grandcolas L, et al. 2012. The metabolomic approach identifies a biological signature of low-dose chronic exposure to cesium-137, J. Radiat. Res. 53: 33–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Grison S, Fave G, Maillot M, et al. 2013. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples, Metabolomics 9: 1168–1180. [CrossRef] [PubMed] [Google Scholar]
  • Gueguen Y, Lestaevel P, Grandcolas L, et al. 2008. Chronic contamination of rats with 137 cesium radionuclide: impact on the cardiovascular system, Cardiovasc. Toxicol. 8: 33–40. [CrossRef] [PubMed] [Google Scholar]
  • Guillen J, Baeza A. 2014. Radioactivity in mushrooms: a health hazard? Food Chem. 154: 14–25. [CrossRef] [Google Scholar]
  • Gulakov AV. 2014. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar (Sus scrofa) found on the territory with radioactive contamination, J. Environ. Radioact. 127: 171–175. [CrossRef] [PubMed] [Google Scholar]
  • Hamada N, Ogino H, Fujimichi Y. 2012. Safety regulations of food and water implemented in the first year following the Fukushima nuclear accident, J. Radiat. Res. 53: 641–671. [CrossRef] [PubMed] [Google Scholar]
  • Handl J, Beltz D, Botsch W, et al. 2003. Evaluation of radioactive exposure from 137Cs in contaminated areas of Northern Ukraine, Health. Phys. 84: 502–517. [CrossRef] [PubMed] [Google Scholar]
  • Hopkins BJ, Casarett GW, Baxter RC, Tuttle LW. 1966. A roentgenographic study of terminal pathological changes in skeletons of strontium-90 treated rats, Radiat. Res. 29: 39–49. [CrossRef] [PubMed] [Google Scholar]
  • Hoshi M, Yamamoto M, Kawamura H, et al. 1994. Fallout radioactivity in soil and food samples in the Ukraine: measurements of iodine, plutonium, cesium, and strontium isotopes, Health Phys. 67: 187–191. [CrossRef] [PubMed] [Google Scholar]
  • Hoshi M, Konstantinov YQ, Evdeeva TY, Kovalev AI, Aksenov AS, Koulikova NV, Sato H, Takatsui T, Takada J, Endo S, Shibata Y, Yamashita S. 2000. Radiocesium in children residing in the western districts of the Bryansk Oblast from 1991–1996, Health Phys. 79(2): 182–186. [CrossRef] [PubMed] [Google Scholar]
  • Howard EB, Clarke WJ. 1970. Induction of hematopoietic neoplasms in miniature swine by chronic feeding of strontium-90, J. Natl. Cancer Inst. 44: 21–38. [PubMed] [Google Scholar]
  • Howard EB, Jannke C. 1970. Immunosuppressive effect of chronic Strontium-90 administration to miniature swine, Experientia 26: 785. [CrossRef] [Google Scholar]
  • Howard EB, Clarke WJ, Karagianes MT, Palmer RF. 1969. Strontium-90-induced bone tumors in miniature swine, Radiat. Res. 39: 594–607. [CrossRef] [PubMed] [Google Scholar]
  • IAEA. 1991. The international Chernobyl project, surface contamination maps. Vienne: AIEA (ed.). [Google Scholar]
  • Ivanov VK, Maksioutov MA, Chekin SY, et al. 2006. The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers, Health Phys. 90: 199–207. [CrossRef] [PubMed] [Google Scholar]
  • Kadhim M, Salomaa S, Wright E, et al. 2013. Non-targeted effects of ionising radiation-implications for low dose risk, Mutat. Res. 752: 84–98. [CrossRef] [PubMed] [Google Scholar]
  • Kossenko MM. 1996. Cancer mortality in the exposed population of the Techa River area, World Health Stat. Q 49: 17–21. [PubMed] [Google Scholar]
  • Krestinina LY, Preston DL, Ostroumova EV, et al. 2005. Protracted radiation exposure and cancer mortality in the Techa River Cohort, Radiat. Res. 164: 602–611. [CrossRef] [PubMed] [Google Scholar]
  • Krestinina LY, Davis FG, Schonfeld S, et al. 2013. Leukaemia incidence in the Techa River Cohort: 1953–2007, Br. J. Cancer 109: 2886–2893. [CrossRef] [PubMed] [Google Scholar]
  • Kuzmenok O, Potapnev M, Potapova S, et al. 2003. Late effects of the Chernobyl radiation accident on T cell-mediated immunity in cleanup workers, Radiat. Res. 159: 109–116. [CrossRef] [PubMed] [Google Scholar]
  • Le Gallic C, Phalente Y, Manens L, et al. 2015. Chronic Internal Exposure to Low Dose 137Cs Induces Positive Impact on the Stability of Atherosclerotic Plaques by Reducing Inflammation in ApoE-/- Mice, PLoS One 10: e0128539. [CrossRef] [PubMed] [Google Scholar]
  • Lestaevel P, Dhieux B, Tourlonias E, et al. 2006. Evaluation of the effect of chronic exposure to 137–Cesium on sleep-wake cycle in rats, Toxicol. 226: 118–125. [CrossRef] [Google Scholar]
  • Lestaevel P, Grandcolas L, Paquet F, Voisin P, Aigueperse J, Gourmelon P. 2008. Neuro-inflammatory response in rats chronically exposed to 137-Cesium, Neurotoxicol. 29: 343–348. [CrossRef] [Google Scholar]
  • Leung AM, Braverman LE. 2014. Consequences of excess iodine, Nat. Rev. Endocrinol. 10(3): 136–142. [CrossRef] [PubMed] [Google Scholar]
  • Lindgren A, Stepanova E, Vdovenko V, et al. 2015. Individual whole-body concentration of (137)Cesium is associated with decreased blood counts in children in the Chernobyl-contaminated areas, Ukraine, 2008-2010, J. Expo. Sci. Environ. Epidemiol. 25: 334–342. [CrossRef] [PubMed] [Google Scholar]
  • Lokke H, Ragas AM, Holmstrup M. 2013. Tools and perspectives for assessing chemical mixtures and multiple stressors, Toxicol. 313: 73–82. [CrossRef] [Google Scholar]
  • Malinovsky G, Yarmoshenko I, Zhukovsky M, Starichenko V, Modorov M. 2013. Strontium biokinetic model for mouse-like rodent, J. Environ. Radioact. 118: 57–63. [CrossRef] [PubMed] [Google Scholar]
  • McMahon DM, Vdovenko VY, Karmaus W, et al. 2014. Effects of long-term low-level radiation exposure after the Chernobyl catastrophe on immunoglobulins in children residing in contaminated areas: prospective and cross-sectional studies, Environ. Health. 13: 36. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C, Seymour C. 2014. Implications for human and environmental health of low doses of ionising radiation, J. Environ. Radioact. 133: 5–9. [CrossRef] [PubMed] [Google Scholar]
  • Musilli S, Nicolas N, El Ali Z, Orellana-Moreno P, Grand C, Tack K, Kerdine-Romer S, Bertho JM. 2017. DNA damge induced by strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functionnal consequences, Sci. Rep. 7: 41580. [CrossRef] [PubMed] [Google Scholar]
  • Nikula KJ, Muggenburg BA, Chang IY, Griffith WC, Hahn FF, Boecker BB. 1995. Biological effects of 137CsCl injected in beagle dogs, Radiat. Res. 142: 347–361. [CrossRef] [PubMed] [Google Scholar]
  • Nikula KJ, Muggenburg BA, Griffith WC, Carlton WW, Fritz TE, Boecker BB. 1996. Biological effects of 137CsCl injected in beagle dogs of different ages, Radiat. Res. 146: 536–547. [CrossRef] [PubMed] [Google Scholar]
  • Nilsson A, Book SA. 1987. Occurrence and distribution of bone tumors in beagle dogs exposed to 90Sr, Acta Oncol. 26: 133–138. [CrossRef] [PubMed] [Google Scholar]
  • Nishio K. 1968. Effects of 90Sr and 137Cs administered continuously upon mice (V), Ann. Rep. Radiat. Center Osaka Prefect. 9: 123–128. [Google Scholar]
  • Nishio K. 1969. Effects of 90Sr and 137Cs administered continuously upon mice (VII). Life-span of mice from the 11th to 20th generations, Ann. Rep. Radiat. Center Osaka Prefect. 10: 90–91. [Google Scholar]
  • Nishio K. 1971. Effects of 90Sr and 137Cs administered continuously upon mice (VIII). Abnormality of reproductive function, Ann. Rep. Radiat. Center Osaka Prefect. 12: 111–112. [Google Scholar]
  • Nishio K, Megumi T, Yonezawa M. 1968. Effects of 90Sr and 137Cs administered continuously upon mice (VI). Abnormality of reproductive function, Ann. Rep. Radiat. Center Osaka Prefect. 9: 86–92. [Google Scholar]
  • Owen M, Sissons HA, Vaughan J. 1957. The effect of a single injection of high dose of 90Sr (500-1000 muc./kg) in rabbits, Br. J. Cancer 11: 229–248. [CrossRef] [PubMed] [Google Scholar]
  • Puhakainen M, Heikkinen T, Rahola T. 2003. Levels of 90Sr and 137Cs in the urine of finnish people, Radiat. Prot. Dosimetry 103: 255–262. [CrossRef] [PubMed] [Google Scholar]
  • Rasilainen TM, Rissanen K. 2014. Distribution of 137Cs in reindeer meat: A comparison of situations with high and low activity concentrations, Radiochemistry 56: 657–664. [CrossRef] [Google Scholar]
  • Reginster JY. 2014. Cardiac concerns associated with strontium ranelate, Expert Opin. Drug Saf. 13: 1209–1213. [CrossRef] [PubMed] [Google Scholar]
  • Schonfeld SJ, Krestinina LY, Epifanova S, Degteva MO, Akleyev AV, Preston DL. 2013. Solid cancer mortality in the techa river cohort (1950-2007), Radiat. Res. 179: 183–189. [CrossRef] [PubMed] [Google Scholar]
  • Sekitani Y, Hayashida N, Karevskaya IV, Vasilitsova OA, Kozlovsky A, Omiya M, Yamashita S, Takamura N. 2010. Evaluation of 137Cs body burden in inhabitants of bryansk Oblast, russian federation, where a high incidence of thyroid cancer was observed after the accident at the Chernobyl nuclear power plant, Radiat. Protect. Dosimetry, 141(1): 36–42. [CrossRef] [MathSciNet] [Google Scholar]
  • Semizhon T, Putyrskaya V, Zibold G, Klemt E. 2009. Time-dependency of the 137Cs contamination of wild boar from a region in Southern Germany in the years 1998 to 2008, J. Environ. Radioact. 100: 988–992. [CrossRef] [PubMed] [Google Scholar]
  • Shagina NB, Tolstykh EI, Zalyapin VI, et al. 2003. Evaluation of age and gender dependences of the rate of strontium elimination 25-45 years after intake: analysis of data from residents living along the Techa river, Radiat. Res. 159: 239–246. [CrossRef] [PubMed] [Google Scholar]
  • Shishkina EA, Tolstykh EI, Verdi E, et al. 2014. Concentrations of 90Sr in the tooth tissues 60 years after intake: results of TL measurements and applications for Techa River dosimetry, Radiat. Environ. Biophys. 53: 159–173. [CrossRef] [PubMed] [Google Scholar]
  • Shutov VN, Travnikova IG, Bruk GY, et al. 2002. Current contamination by 137Cs and 90Sr of the inhabited part of the Techa river basin in the Urals, J. Environ. Radiaoact. 61: 91–109. [CrossRef] [Google Scholar]
  • Skuterud L, Thørring H. 2012. Averted doses to Norwegian Sámi reindeer herders after the chernobyl accident, Health Phys. 102: 208–216. [CrossRef] [PubMed] [Google Scholar]
  • Souidi M, Tissandie E, Grandcolas L, et al. 2006. Chronic contamination with 137-cesium in rat: effect on liver cholesterol metabolism, Int. J. Toxicol. 25: 493–497. [CrossRef] [PubMed] [Google Scholar]
  • Strand P, Selnaes TD, Boe E, Harbitz O, Andersson-Sorlie A. 1992. Chernobyl fallout: internal doses to the Norwegian population and the effect of dietary advice, Health Phys. 63: 385–392. [CrossRef] [PubMed] [Google Scholar]
  • Strebl F, Tataruch F. 2007. Time trends (1986-2003) of radiocesium transfer to roe deer and wild boar in two Austrian forest regions, J. Environ. Radioact. 98: 137–152. [CrossRef] [PubMed] [Google Scholar]
  • Sugimoto A, Nomura S, Tsubokura M, et al. 2013. The relationship between media consumption and health-related anxieties after the Fukushima Daiichi nuclear disaster, PLoS One 8: e65331. [CrossRef] [PubMed] [Google Scholar]
  • Synhaeve N, Musilli S, Stefani J, et al. 2016. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to 90Sr, Radiat. Res. 185: 267–284. [CrossRef] [PubMed] [Google Scholar]
  • Synhaeve N, Stefani J, Tourlonias E, Dublineau I, Bertho JM. 2011. Biokinetics of 90Sr after chronic ingestion in a juvenile and adult mouse model, Radiat. Environ. Biophys. 50: 501–511. [CrossRef] [PubMed] [Google Scholar]
  • Synhaeve N, Wade-Gueye NM, Musilli S, et al. 2014. Chronic exposure to low concentrations of strontium 90 affects bone physiology but not the hematopoietic system in mice, J. Appl. Toxicol. 34: 76–86. [CrossRef] [PubMed] [Google Scholar]
  • Tajtakova M, Semanova Z, Tomkova Z, et al. 2006. Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area, Chemosphere 62: 559–564. [CrossRef] [PubMed] [Google Scholar]
  • Thurman GB, Mays CW, Taylor GN, Christensen WR, Rehfeld CE, Dougherty TF. 1971. Growth dynamics of beagle osteosarcomas, Growth 35: 119–125. [PubMed] [Google Scholar]
  • Tissandie E, Gueguen Y, Lobaccaro JM, et al. 2006. Chronic contamination with 137-Cesium affects Vitamin D3 metabolism in rats, Toxicol. 225: 75–80. [CrossRef] [Google Scholar]
  • Tissandie E, Gueguen Y, Lobaccaro JM, et al. 2009. Vitamin D metabolism impairment in the rat's offspring following maternal exposure to 137-cesium, Arch. Toxicol. 83: 357–362. [CrossRef] [PubMed] [Google Scholar]
  • Titov LP, Kharitonic GD, Gourmanchuk IE, Ignatenko SI. 1995. Effects of radiation on the production of immunoglobulins in children subsequent to the Chernobyl disaster, Allergy Proc. 16: 185–193. [CrossRef] [PubMed] [Google Scholar]
  • Tolstykh EI, Shagina NB, Peremyslova LM, et al. 2008. Reconstruction of (90)Sr intake for breast-fed infants in the Techa riverside settlements, Radiat. Environ. Biophys. 47: 349–357. [CrossRef] [PubMed] [Google Scholar]
  • Tolstykh EI, Shagina NB, Degteva MO, Anspaugh LR, Napier BA. 2011. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents, Radiat. Environ. Biophys. 50: 417–430. [CrossRef] [PubMed] [Google Scholar]
  • Tourlonias E, Bertho JM, Gurriaran R, Voisin P, Paquet F. 2010. Distribution of 137Cs in rat tissues after various schedules of chronic ingestion, Health Phys. 99: 39–48. [CrossRef] [PubMed] [Google Scholar]
  • Traoré T, Béchaux C, Sirot V, Crépet A. 2016. To which chemical exposures is the French population exposed? Mixture identification from the second French total diet study, Food Chem. Toxicol. 98: 179–188. [CrossRef] [PubMed] [Google Scholar]
  • Tsubokura M, Kato S, Nihei M, et al. 2013. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster, PLoS One 8: e81909. [CrossRef] [PubMed] [Google Scholar]
  • Tsubokura M, Kato S, Nomura S, et al. 2014. Reduction of high levels of internal radio-contamination by dietary intervention in residents of areas affected by the Fukushima Daiichi nuclear plant disaster: a case series, PLoS One 9: e100302. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Tsubokura M, Kato S, Nomura S, et al. 2015. Absence of Internal Radiation Contamination by Radioactive Cesium among Children Affected by the Fukushima Daiichi Nuclear Power Plant Disaster, Health Phys. 108: 39–43. [CrossRef] [PubMed] [Google Scholar]
  • Turner HC, Shuryak I, Weber W, et al. 2015. gamma-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90, PLoS One 10: e0143815. [CrossRef] [PubMed] [Google Scholar]
  • Uckun FM, Mitchell JB, Obuz V, et al. 1991. Radiation sensitivity of human B-lineage lymphoid precursor cells, Int. J. Radiat. Oncol. Biol. Phys. 21: 1553–1560. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR. 2011. Annex D: Health effects due to radiation from the Chernobyl accident. Dans : Sources and effects of ionizing radiation, pp. 1–173. New-York, United Nations: UNSCEAR. [Google Scholar]
  • Vozilova AV, Shagina NB, Degteva MO, Akleyev AV. 2013. Chronic radioisotope effects on residents of the Techa River (Russia) region: cytogenetic analysis more than 50 years after onset of exposure, Mutat. Res. 756: 115–118. [CrossRef] [PubMed] [Google Scholar]
  • Wertelecki W. 2010. Malformations in a chornobyl-impacted region, Pediatrics 125: e836–843. [Google Scholar]
  • Wertelecki W, Koerblein A, Ievtushok B, et al. 2016. Elevated congenital anomaly rates and incorporated cesium-137 in the Polissia region of Ukraine, Birth Defects Res. A Clin. Mol. Teratol. 106: 194–200. [CrossRef] [PubMed] [Google Scholar]
  • White RG, Raabe OG, Culbertson MR, Parks NJ, Samuels SJ, Rosenblatt LS. 1993. Bone sarcoma characteristics and distribution in beagles fed strontium-90, Radiat. Res. 136: 178–189. [CrossRef] [PubMed] [Google Scholar]
  • WHO. 2012. Preliminary dose estimation from the nuclear accident after the 2011 great east Japan earthquake and tsunami. WHO. [Google Scholar]
  • WHO. 2013. Health risk assessment from the nuclear accident after the 2011 great east Japan earthquake and tsunami. WHO. [Google Scholar]
  • Worgul BV, Kundiyev YI, Sergiyenko NM, et al. 2007. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures, Radiat. Res. 167: 233–243. [CrossRef] [PubMed] [Google Scholar]
  • Yarilin AA, Belyakov IM, Kusmenok OI, et al. 1993. Late T cell deficiency in victims of the Chernobyl radiation accident: possible mechanisms of induction, Int. J. Radiat. Biol. 63: 519–528. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida T, Mei H, Dorner T, et al. 2010. Memory B and memory plasma cells, Immunol. Rev. 237: 117–139. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Zarybnicka L, Vavrova J, Havelek R, Tichy A, Pejchal J, Sinkorova Z. 2013. Lymphocyte subsets and their H2AX phosphorylation in response to in vivo irradiation in rats, Int. J. Radiat. Biol. 89: 110–117. [CrossRef] [PubMed] [Google Scholar]
  • Zhu J, Garrett R, Jung Y, et al. 2007. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells, Blood 109: 3706–3712. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.