Free Access
Volume 50, Number 4, Octobre-Décembre 2015
Page(s) 281 - 285
Published online 16 November 2015
  • Agostinelli S. et al. (2003) Geant4 – a simulation toolkit, Nucl. Instrum. Meth. A 506, 250-303. [Google Scholar]
  • Allison J. et al. (2006) Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (1), 270-278. [Google Scholar]
  • Braunn B., Boudard Colin A.J., Cugnon J., Cussol D., David J.C., Kaitaniemi P., Labalme M., Leray S., Mancusi D. (2013) Comparisons of hadrontherapy-relevant data to nuclear interaction codes in the Geant4 toolkit, J. Phys.: Conf. Ser. 420, 012163. [CrossRef] [Google Scholar]
  • Carmeliet P., Jain R.K. (2000) Angiogenesis in cancer and other diseases, Nature 407 (6801), 249-257. [CrossRef] [PubMed] [Google Scholar]
  • Chauvie S. et al. (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models, IEEE Trans. Nucl. Sci. 54, 261928. [Google Scholar]
  • Cheong S.-K., Jones B.L., Siddiqi A.K., Liu F., Manohar N., Cho S.H. (2010) X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp X-rays, Phys. Med. Biol. 55, 647-662. [CrossRef] [PubMed] [Google Scholar]
  • Chithrani D.B., Jelveh S., Jalali F., Prooijen M.V., Allen C., Bristow R.G., Hill R.P., Jaffray D.A. (2010) Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy, Radiat. Res. 173 (6), 719-728. [CrossRef] [PubMed] [Google Scholar]
  • Chow J.C.L., Leung M.K.K., Jaffray D.A. (2012) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams, Phys. Med. Biol. 57, 3323-3331. [CrossRef] [PubMed] [Google Scholar]
  • Connell P., Hellman S. (2009) Advances in radiotherapy and implications for the next century: A historical perspective, Cancer Res. 69 (2), 383-392. [CrossRef] [Google Scholar]
  • Giljohann D.A., Seferos D.S., Daniel W.L., Massich M.D., Patel P.C., Mirkin C.A. (2010) Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (19), 3280-3294. [CrossRef] [Google Scholar]
  • Heath J.R., Davis M.E. (2008) Nanotechnology and cancer, Annu. Rev. Med. 59 (1), 251-265. [CrossRef] [PubMed] [Google Scholar]
  • Jain S., Hirst D.G., O’Sullivan J.M. (2012) Gold Nanoparticle as novel agents for cancer therapy, Br. J. Radiol. 85, 101-113. [CrossRef] [PubMed] [Google Scholar]
  • Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C.W. (2008) Nanoparticle-mediated cellular response is size-dependent, Nat. Nanotechnol. 3, 145-150. [CrossRef] [PubMed] [Google Scholar]
  • Jiao P.F., Zhou H.Y., Chen L.X., Yan B. (2011) Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy, Current Medicinal Chemistry 18, 2086-2102. [CrossRef] [PubMed] [Google Scholar]
  • Kim D., Jon S. (2012) Gold nanoparticles in image-guided cancer therapy, Inorganica Chimica Acta 393, 154-164. [CrossRef] [Google Scholar]
  • Kominami H., Tanaka A., Hashimoto K. (2011) Gold nanoparticles supported on cerium (IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ = 530 nm, Applied Catalysis A 397, 121-126. [CrossRef] [Google Scholar]
  • Lawrence T.S., Ten Haken R.K., Giaccia A. (2008) Principles of Radiation Oncology. In: Cancer: Principles and Practice of Oncology, 8th ed. (V.T. DeVita Jr., T.S. Lawrence, S.A. Rosenberg, Eds.). Lippincott Williams and Wilkins, Philadelphia. [Google Scholar]
  • McMahon S.J. et al. (2011) Nanodosimetric Effects of Gold Nanoparticles in Megavoltage Radiation Therapy, Radiother. Oncol. 100, 412-416. [CrossRef] [PubMed] [Google Scholar]
  • Mesbahi A. (2010) A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer, Reports of practical oncology and radiotherapy, 15, 176-180. [CrossRef] [Google Scholar]
  • Misawa M., Takahashi J. (2011) Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations, Nanomedicine: Nanotechnology, Biology, and Medicine 7, 604-614. [CrossRef] [Google Scholar]
  • Pandola L. et al. (2015) Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3 MeV, Nucl. Instrum. Methods Phys. Res. B 350, 41-48. [CrossRef] [Google Scholar]
  • Porcel E. et al. (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21, 085-103. [CrossRef] [Google Scholar]
  • Ricketts K., Castoldi A., Guazzoni C., Ozkan C., Christodoulou C., Gibson A.P., Royle G.J. (2012) A quantitative X-ray detection system for gold nanoparticle tumour biomarkers, Phys. Med. Biol. 57, 5543-5555. [CrossRef] [PubMed] [Google Scholar]
  • Tsiamas P. et al. (2013) Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement, Phys. Med. Biol. 58, 451-464. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y.J. et al. (2008) Dosimetric Analyses of Single Particle Microbeam in Cell Irradiation Experiment, Plasma Sci. Technol. 10 (6), 764-768. [CrossRef] [Google Scholar]
  • Zhang X.D., Wu D., Shen X., Chen J., Sun Y.M., Lu P.X., Liang X.J. (2012) Size-dependent radiosensitization of PEG-coated Gold nanoparticles for cancer radiation therapy, Biomaterials 33, 6408-6419. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.