Accès gratuit
Numéro
Radioprotection
Volume 50, Numéro 4, Octobre-Décembre 2015
Page(s) 281 - 285
DOI https://doi.org/10.1051/radiopro/2015019
Publié en ligne 16 novembre 2015
  • Agostinelli S. et al. (2003) Geant4 – a simulation toolkit, Nucl. Instrum. Meth. A 506, 250-303. [Google Scholar]
  • Allison J. et al. (2006) Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (1), 270-278. [Google Scholar]
  • Braunn B., Boudard Colin A.J., Cugnon J., Cussol D., David J.C., Kaitaniemi P., Labalme M., Leray S., Mancusi D. (2013) Comparisons of hadrontherapy-relevant data to nuclear interaction codes in the Geant4 toolkit, J. Phys.: Conf. Ser. 420, 012163. [CrossRef] [Google Scholar]
  • Carmeliet P., Jain R.K. (2000) Angiogenesis in cancer and other diseases, Nature 407 (6801), 249-257. [CrossRef] [PubMed] [Google Scholar]
  • Chauvie S. et al. (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models, IEEE Trans. Nucl. Sci. 54, 261928. [Google Scholar]
  • Cheong S.-K., Jones B.L., Siddiqi A.K., Liu F., Manohar N., Cho S.H. (2010) X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp X-rays, Phys. Med. Biol. 55, 647-662. [CrossRef] [PubMed] [Google Scholar]
  • Chithrani D.B., Jelveh S., Jalali F., Prooijen M.V., Allen C., Bristow R.G., Hill R.P., Jaffray D.A. (2010) Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy, Radiat. Res. 173 (6), 719-728. [CrossRef] [PubMed] [Google Scholar]
  • Chow J.C.L., Leung M.K.K., Jaffray D.A. (2012) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams, Phys. Med. Biol. 57, 3323-3331. [CrossRef] [PubMed] [Google Scholar]
  • Connell P., Hellman S. (2009) Advances in radiotherapy and implications for the next century: A historical perspective, Cancer Res. 69 (2), 383-392. [CrossRef] [Google Scholar]
  • Giljohann D.A., Seferos D.S., Daniel W.L., Massich M.D., Patel P.C., Mirkin C.A. (2010) Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (19), 3280-3294. [CrossRef] [Google Scholar]
  • Heath J.R., Davis M.E. (2008) Nanotechnology and cancer, Annu. Rev. Med. 59 (1), 251-265. [CrossRef] [PubMed] [Google Scholar]
  • Jain S., Hirst D.G., O’Sullivan J.M. (2012) Gold Nanoparticle as novel agents for cancer therapy, Br. J. Radiol. 85, 101-113. [CrossRef] [PubMed] [Google Scholar]
  • Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C.W. (2008) Nanoparticle-mediated cellular response is size-dependent, Nat. Nanotechnol. 3, 145-150. [CrossRef] [PubMed] [Google Scholar]
  • Jiao P.F., Zhou H.Y., Chen L.X., Yan B. (2011) Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy, Current Medicinal Chemistry 18, 2086-2102. [CrossRef] [PubMed] [Google Scholar]
  • Kim D., Jon S. (2012) Gold nanoparticles in image-guided cancer therapy, Inorganica Chimica Acta 393, 154-164. [CrossRef] [Google Scholar]
  • Kominami H., Tanaka A., Hashimoto K. (2011) Gold nanoparticles supported on cerium (IV) oxide powder for mineralization of organic acids in aqueous suspensions under irradiation of visible light of λ = 530 nm, Applied Catalysis A 397, 121-126. [CrossRef] [Google Scholar]
  • Lawrence T.S., Ten Haken R.K., Giaccia A. (2008) Principles of Radiation Oncology. In: Cancer: Principles and Practice of Oncology, 8th ed. (V.T. DeVita Jr., T.S. Lawrence, S.A. Rosenberg, Eds.). Lippincott Williams and Wilkins, Philadelphia. [Google Scholar]
  • McMahon S.J. et al. (2011) Nanodosimetric Effects of Gold Nanoparticles in Megavoltage Radiation Therapy, Radiother. Oncol. 100, 412-416. [CrossRef] [PubMed] [Google Scholar]
  • Mesbahi A. (2010) A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer, Reports of practical oncology and radiotherapy, 15, 176-180. [CrossRef] [Google Scholar]
  • Misawa M., Takahashi J. (2011) Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations, Nanomedicine: Nanotechnology, Biology, and Medicine 7, 604-614. [CrossRef] [Google Scholar]
  • Pandola L. et al. (2015) Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3 MeV, Nucl. Instrum. Methods Phys. Res. B 350, 41-48. [CrossRef] [Google Scholar]
  • Porcel E. et al. (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21, 085-103. [CrossRef] [Google Scholar]
  • Ricketts K., Castoldi A., Guazzoni C., Ozkan C., Christodoulou C., Gibson A.P., Royle G.J. (2012) A quantitative X-ray detection system for gold nanoparticle tumour biomarkers, Phys. Med. Biol. 57, 5543-5555. [CrossRef] [PubMed] [Google Scholar]
  • Tsiamas P. et al. (2013) Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement, Phys. Med. Biol. 58, 451-464. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y.J. et al. (2008) Dosimetric Analyses of Single Particle Microbeam in Cell Irradiation Experiment, Plasma Sci. Technol. 10 (6), 764-768. [CrossRef] [Google Scholar]
  • Zhang X.D., Wu D., Shen X., Chen J., Sun Y.M., Lu P.X., Liang X.J. (2012) Size-dependent radiosensitization of PEG-coated Gold nanoparticles for cancer radiation therapy, Biomaterials 33, 6408-6419. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.