Free Access
Issue
Radioprotection
Volume 50, Number 4, Octobre-Décembre 2015
Page(s) 273 - 280
DOI https://doi.org/10.1051/radiopro/2015020
Published online 16 November 2015
  • Abd El-Ghafour N.G., Khalil M.H., Gharib M.E., Abd Latif M.L. (2012) Mineralogical and radioactive properties of some Egyptian granitoid rocks and their suitability for ornamental stones, HBRC J. 8, 64-68. [CrossRef] [Google Scholar]
  • Anjos R.M., Veiga R., Soares T., Santos A.M.A., Aguiar J.G., Frascá M.H.B.O., Brage J.A.P., Uzêda D., Mangia L., Facure A., Mosquera B., Carvalho C., Gomes P.R.S. (2005) Natural radionuclide distribution in Brazilian commercial granites, Radiat. Meas. 39, 245-253. [CrossRef] [Google Scholar]
  • Asghar M., Tufail M., Sabiha-Javied Abid A., Waqas M. (2008) Radiological implications of granite of northern Pakistan, J. Radiol. Prot. 28, 387-399. [CrossRef] [PubMed] [Google Scholar]
  • Capaccioni B., Cinelli G., Mostacci D., Tositti L. (2012) Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy), J. Volc. Geotherm. Res. 247-248, 26-36. [CrossRef] [Google Scholar]
  • Chowdhury I.M., Alam M.N., Ahmed A.K.S. (1998) Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard, J. Radioanal. Nucl. Chem. 231 (1-2), 117-122. [CrossRef] [Google Scholar]
  • Currie L.A. (1968) Limits for qualitative detection and quantitative determination, Anal. Chem. 40, 586-593. [CrossRef] [Google Scholar]
  • Değerlier M. (2013) Assessment of natural radioactivity and radiation hazard in volcanic tuff stones used as building and decoration materials in the Cappadocia region, Turkey, Radioprotection 48 (2), 215-219. [CrossRef] [EDP Sciences] [Google Scholar]
  • EC (European Commission) (1999) Radiation protection 112- Radiological protection principles concerning the natural radioactivity of building materials. Directorate- General Environment, Nuclear Safety and Civil Protection. [Google Scholar]
  • El-Arabi A.M. (2007) 226Ra, 232Th and 40K concentration in igneous rocks from eastern desert, Egypt and its radiological implication, Radiat. Meas. 42, 94-100. [CrossRef] [Google Scholar]
  • Kitto M.E., Haines D.K., Menia T.A. (2009) Assessment of gamma-ray emissions from natural and manmade decorative stones, J. Radioanal. Nucl. Chem. 282, 490-413. [CrossRef] [Google Scholar]
  • Koornneef J.M., Stracke A., Aciego S., Reubi O., Bourdon B. (2010) A new method for U–Th–Pa–Ra separation and accurate measurement of 234U–230Th–231Pa–226Ra disequilibria in volcanic rocks by MC-ICPMS, Chem. Geo. 277, 30-41. [CrossRef] [Google Scholar]
  • Lanzo G., Basile S., Brai M., Rizzo S. (2010) Volcanic products of Lipari (Aeolian islands, Italy): Multivariate analysis of petrographic and radiometric data, Radiat. Meas. 45, 816-822. [CrossRef] [Google Scholar]
  • Lavi N., Groppi F., Alfassi Z.B. (2004) On the measurement of 40K in natural and synthetic materials by the method of high-resolution gamma ray spectrometry, Radiat. Meas. 38, 139-143. [CrossRef] [Google Scholar]
  • Marocchi M., Righi S., Bargossi G.M., Gasparotto G. (2011) Natural radionuclides content and radiological hazard of commercial ornamental stones: An integrated radiometric and mineralogical-petrographic study, Radiat. Meas. 46, 538-545. [CrossRef] [Google Scholar]
  • Moura C.L., Artur A.C., Bonotto D.M., Guedes S., Martinelli C.D. (2011) Natural radioactivity and radon exhalation rate in Brazilian igneous rocks, Appl. Radiat. Isotopes 69, 1094-1099. [CrossRef] [Google Scholar]
  • Righi S., Bruzzi L. (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings, J. Environ. Radioact. 88, 158-170. [CrossRef] [PubMed] [Google Scholar]
  • Trevisi R., Risica S., D’Alessandro M., Paradiso D., Nuccetelli C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance, J. Environ. Radioact. 105, 11-20. [CrossRef] [PubMed] [Google Scholar]
  • Turhan Ş., Gündüz L. (2008) Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples, J. Environ. Radioact. 99-2, 332-342. [CrossRef] [PubMed] [Google Scholar]
  • Turhan Ş. (2009) Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey, J. Radiol. Prot. 29, 75-83. [CrossRef] [PubMed] [Google Scholar]
  • Turhan Ş. (2012) Estimation of possible radiological hazards from natural radioactivity in commercially-utilized ornamental and countertops granite tiles, Ann. Nucl. Energy 44, 34-39. [CrossRef] [Google Scholar]
  • UNSCEAR (1982) Ionizing radiation: Sources and biological effects. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Publication, New York, USA. [Google Scholar]
  • UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Publication, New York, USA. [Google Scholar]
  • White G.J., Rood A.S. (2001) Radon emanation from NORM-contaminated pipe scale and soil at petroleum industry sites, J. Environ. Radioact. 54, 401-413. [CrossRef] [PubMed] [Google Scholar]
  • WHO (2009) Handbook on indoor radon. A public health perspective. WHO Library Cataloguing-in-Publication Data NLM classification: WN 615, France. [Google Scholar]
  • Xinwei L., Lingqing W., Xiaodan J. (2006) Radiometric analysis of Chinese commercial granites, J. Radioanal. Nucl. Chem. 267 (3), 669-673. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.