Free Access
Issue
Radioprotection
Volume 48, Number 2, Avril-Juin 2013
Page(s) 259 - 276
Section Articles
DOI https://doi.org/10.1051/radiopro/2013055
Published online 08 March 2013
  • Barry P.J., Watkins B.M., Belot Y., Davis P.A., Edlund O., Galeriu D., Raskob W., Russell S., Togawa O. (1999) Intercomparison of model predictions of tritium concentrations in soil and foods following acute airborne HTO exposure, J. Environm. Radioact. 42, 191-207. [CrossRef] [Google Scholar]
  • Belot Y., Gauthier D., Camus H., Caput Cl. (1979) Prediction of the flux of tritiated water from air to plant leaves, Health Phys. 37, 575-583. [CrossRef] [PubMed] [Google Scholar]
  • Belot Y., Roy M., Metivier H. et al. (1996) Le tritium de l’environnement à l’homme IPSN. Éditions de Physique, Paris. [Google Scholar]
  • Boyer C., Vichot L., Fromm M., Losset Y., Tatin-Frouxa F., Guétat Ph., Badot P.M. (2009) Tritium in plants: A review of current knowledge, Environm. Experim. Botany 67, 34-51. [Google Scholar]
  • DeVol T.A., Powell B.A. (2004) Thorical organically bound tritium dose estimates, Health Phys. 86, 183-186. [CrossRef] [PubMed] [Google Scholar]
  • Diabaté S., Honig D. (1988) Conversion of molecular tritium to HTO and OBT in plants and soils, Fusion Technol. 14, 1235-1239. [Google Scholar]
  • Feinhals J., Bunnennberg C. (1988) Laboratory investigations of HTO deposition to soils, Fusion Technol. 14, 1253-1257. [Google Scholar]
  • Galeriu D., Crout N.M.J., Melintescu A., Beresford N.A., Peterson S.-R., Van Hess M. (2001) Metabolic derivation of tritium transfer factors in animal products, Rad. Environm. Biophys. 40, 325-334. [CrossRef] [Google Scholar]
  • Galeriu D., Melintescu A., Beresford N.A., Crout N.M.J., Peterson, R., Takeda H. (2007) Modelling 3H and 14C transfer to farm animals and their products under steady state conditions, J. Environm. Radioact. 98 (1-2), 205-217. [CrossRef] [Google Scholar]
  • Galeriu D., Davis Ph., Raskob W., Mellintescu A. (2008) Tritium radioecology and dosimetry – Today and tomorrow, Fusion Sci. Technol. 54 (1), 237-243. [Google Scholar]
  • Galeriu D., Melintescu A., Beresford N.A., Takeda H., Crout N.M.J. (2009) The dynamic transfer of 3H and 14C in mammals: a proposed generic model, Radiat. Environ. Biophys. 48 (1), 29-45. [CrossRef] [PubMed] [Google Scholar]
  • Galeriu D., Melintescu A. (2011) A model approach for tritium dynamics in wild mammals, Radioprotection 46 (6), S445-S451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Garland J.A., Ameen M. (1979) Incorporation of tritium in grain plants, Health Phys. 36, 35-38. [CrossRef] [PubMed] [Google Scholar]
  • Guenot J., Belot Y. (1984) Assimilation of 3H in photosynthesizing leaves exposed to HTO, Health Phys. 47, 849-855. [CrossRef] [PubMed] [Google Scholar]
  • Guetat Ph., Patryl L. (2004) Analysis of the consequences of an acute atmospheric release of tritium, “Tritium 2004 baden-baden”, Fusion Sci. Technol. 48 (1), 441-444. [Google Scholar]
  • Guetat Ph., Patryl L. (2008) Environmental and radiological impact of accidental tritium release- “Tritium 2007 Rochester”, Fusion Sci. Technol. 54 (1), 273-276. [Google Scholar]
  • Guetat Ph., Douche C., Hubinois J.C. (2008) Le tritium et l’environnement : sources, mesures et transferts, Radioprotection 43, 547-569. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guetat Ph., Boyer C., Tognelli A.Duda J.M. (2011) 50 years Environmental Tritium transfer review in the vicinity of a French Research centre, Tritium 2010, Fusion Sci. Technol. 60 (4), 1238-1243. [Google Scholar]
  • IAEA (2003) Modelling the environmental transport of tritium in the vicinity of a long term atmospheric and sub-surface sources, http://www-pub.iaea.org/MTCD/publications/ PDF/Biomass3_web.pdf [Google Scholar]
  • IAEA (2008) Davis P.A., Leclerc E., Galeriu D.C., Melintescu A., Kashparov V., Peterson S.-R., Ravi P.M., Siclet F., Tamponet C., Specific activity models and parameter values for tritium, 14C and 36Cl in IAEA-TECDOC-1616, Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. [Google Scholar]
  • IAEA (2012) Environmental Modelling for radiation Safety (EMRAS), A summary report of the results of the EMRAS Programme (2003-2007), Modelling the Environmental Transfer of tritium and Carbon-14 to biota and Man, IAEA-TECDOC-1678 Companion CD. [Google Scholar]
  • ICRP publication 56 (1989) Hydrogen, Ann. ICRP 20 (1), 15-19. [Google Scholar]
  • Kim M.-A., Baumgärtner F. (1994) Equilibrium and non-equilibrium partition of tritium between organics and tissue water of different biological systems, Appl. Radiat. Isotopes 45, 353-360. [Google Scholar]
  • Patryl L., Galeriu D., Armand P., (2011) Sensitivity Analysis of Rain Characteristics on HTO Concentration in Drops, Fusion Sci. Technol. 60 (4), 1228-1231. [Google Scholar]
  • Melintescu A. (2011) Processes and parameters in modelling dry and wet deposition of radionuclides, part of Ph.D. thesis, Romania X. [Google Scholar]
  • Van Diepen, Driessen P.M., van der Goot E., Goudriaan J., Hijmans R.J., Hooijer A.A., van Keulen H., van Kappel R.R., de Koning G.H.J., van Kraalingen D.W.G., Kropff M.J., van Laar H.H., Rappoldt C., Penning de Vries F.W.T., Spitters C.J.T., Supit I., van der Wal T., Wolf J. (2003) WOFOST: Updated system description of the WOFOST crop growth simulation model as implemented in the Crop Growth Monitoring System applied by the European Commission, I. Supit, E.van der Goot (Eds). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.