Issue |
Radioprotection
Volume 46, Number 6, 2011
ICRER 2011 – International Conference on Radioecology & Environmental Radioactivity: Environment & Nuclear Renaissance
|
|
---|---|---|
Page(s) | S445 - S451 | |
Section | Mechanisms and Models | |
DOI | https://doi.org/10.1051/radiopro/20116572s | |
Published online | 09 January 2012 |
A model approach for tritium dynamics in wild mammals
“Horia Hulubei” National Institute of Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului St., POB MG-6, Bucharest-Magurele, RO-077125, Romania
Tritium (3H) transfer into environment must be modelled differently than the transfer of other radionuclides released from nuclear reactors because hydrogen represents the building blocks of life. A solid understanding of 3H behaviour is essential because 3H may be released in large quantities from CANDU (CANada Deuterium Uranium) reactors and from future thermonuclear reactors. Recently, the authors published a complex dynamic metabolic model for 3H and 14C transfer in farm and wild animals, but the model applications for wild biota were restricted to too few examples and mostly for 14C transfer. In this study, the model is applied to few selected wild animals for 3H uptake. Despite the lack of any experimental data for wild animals, the results presented in this study are less uncertain than for many other radionuclides and can provide a useful estimation for biota radioprotection.
© Owned by the authors, published by EDP Sciences, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.