Free Access
Issue
Radioprotection
Volume 40, Number 2, April-June 2005
Page(s) 203 - 229
DOI https://doi.org/10.1051/radiopro:2005008
Published online 17 June 2005
  • Abdelouas A., Grambow B., Fattahi M., Andrès Y., Leclerc-Cessac E. (2005) Microbial reduction of 99Tc in organic matter-rich soils, Sci. Tot. Environ. 336, 255-268 [CrossRef] [Google Scholar]
  • Absalom J.P., Young S.D., Crout N.M.J., Sanchez A., Wright S.M., Smolders E., Nisbet A.F., Gillett A.G. (2001) Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics, J. Environ. Radioactiv. 52, 31-43. [CrossRef] [Google Scholar]
  • Ashworth D.J., Shaw G., Butler A.P., Ciciani L. (2003) Soil transport and plant uptake of radio-iodine from near-surface groundwater, J. Environ. Radioactiv. 70, 99-114. [CrossRef] [Google Scholar]
  • Azaizeh H.A., Gowthaman S., Terry N., Zayed A.M., de Souza M.P., Tarun A.S. (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland, J. Environ. Qual. 26, 666-672. [CrossRef] [Google Scholar]
  • Baes C.F. (1982) Prediction of radionuclides Kd values from soil-to-plants concentrations ratios, Trans. Am. Nucl. Soc. 41, 53-54. [Google Scholar]
  • Baes C.F., Sharp R.D. (1983) A proposal for estimation of soil leaching and leaching constants for use in assessment models, J. Environ. Qual. 12, 17-27. [CrossRef] [Google Scholar]
  • Baes C.F., Sharp R.D., Sjoreen A.L., Shor R.W. (1984) A Review and analysis of parameters for assessing transport of environmentally released radionuclides through agriculture. Rapport ORNL-5786, Oak Ridge National Lab., Tenn. (USA). [Google Scholar]
  • Balistrieri L.S., Chao T.T. (1987) Selenium adsorption by goethite, Soil. Sci. Soc. Am. J. 51, 1145-1151. [CrossRef] [Google Scholar]
  • Berhens H. (1986) Speciation of radioiodine in aquatic and terrestrial systems under the influence of biogeochemical processes. In: Speciation of fission and activation products in the environment (Bulman R. A. , Cooper J. R., Eds.) pp. 223-230. Elsevier Applied Science, London. [Google Scholar]
  • Bostock A.C., Shaw G., Bell J.N.B. (2003) The volatilisation and sorption of 129I in coniferous forest, grassland and frozen soils, J. Environ. Radioactiv. 70, 29-42. [CrossRef] [Google Scholar]
  • Brauer F.R., Strebin R.S. (1982) Environmental concentration and migration of 129I. In: Environmental Migration of Radionuclides. IAEA-SM-257, pp. 465-480. International Atomic Energy Agency, Vienne. [Google Scholar]
  • Bunzl K., Schimmack W. (1988) Effect of microbial biomass reduction by gamma-irradiation on the sorption of 137Cs, 85Sr, 139Ce, 57Co,109Cd, 65Zn, 103Ru, 95mTc and 131I by soils, Radiat. Environ. Bioph. 27, 165-176. [CrossRef] [Google Scholar]
  • Bunzl K., Schimmack W. (1991) Kinetics of the sorption of 137Cs, 85Sr, 57Co, 65Zn and 109Cd by the organic horizons of a forest soil, Radiochim. Acta 54, 97-102. [Google Scholar]
  • Campbell L.S., Davies B.E. (1995) Soil sorption of caesium modelled by the Langmuir and Freundlich isotherm equations, Appl. Geochem. 10, 715-723. [CrossRef] [Google Scholar]
  • Camps M., Rigol A., Vidal M., Rauret G. (2003) Assessment of the suitability of soil amendments to reduce 137Cs and 90Sr root uptake in meadows, Environ. Sci. Technol. 37, 2820-2828. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Camps M., Rigol A., Hillier S., Vidal M., Rauret G. (2004) Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil-plant transfer in meadows, Sci. Tot. Environ. 332, 23-38. [CrossRef] [Google Scholar]
  • Capo R.C., Stewart B.W., Chadwick O.A. (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods, Geoderma 82, 197-225. [CrossRef] [Google Scholar]
  • Casiot C., Barciela Alonso M.C., Boisson J., Donard O.F.X., Potin-Gautier M. (1998) Simultaneous speciation of arsenic, selenium, antimony and tellurium species in waters and soil extracts by capillary electrophoresis and UV detection, Analyst 123, 2887-2894. [CrossRef] [Google Scholar]
  • Christiansen J. (1990) The behaviour of iodine in the terrestrial environment. Rapport RISØE M‑2851, Fev 1990, 156 p. Risø National Laboratory, Denmark. [Google Scholar]
  • Cole T., Bidoglio G., Soupioni M., O'Gorman M., Gibson N. (2000) Diffusion mechanisms of multiple strontium species in clay, Geochim. Cosmochim. Ac. 64, 385-396. [CrossRef] [Google Scholar]
  • Cornell R.N. (1993) Adsorption of cesium on minerals: a review, J. Radioanal. Nuc. Chem. 171, 483-500. [CrossRef] [Google Scholar]
  • Cremers A., Elsen A., Preter P.D., Maes A. (1988) Quantitative analysis of radiocaesium retention in soils, Nature 335, 247-249. [CrossRef] [Google Scholar]
  • Dai J.L., Zhang M., Zhu Y.G. (2004) Adsorption and desorption of iodine by various Chinese soils: I. Iodate, Environ. Int. 30, 525-530. [CrossRef] [PubMed] [Google Scholar]
  • del Debbio J.A. (1991) Sorption of strontium, selenium, cadmium and mercury in soil, Radiochim. Acta 52/53, 181-186. [Google Scholar]
  • Deneux-Mustin S., Roussel-Debet S., Mustin C., Henner P., Munier-Lamy C., Colle C., Berthelin J., Garnier-Laplace J., Leyval C. (2003) Mobilité et transfert racinaire des éléments en traces : influence des micro-organismes du sol. Tec & Doc, Lavoisier, Paris. [Google Scholar]
  • Dhillon S., Dhillon K. (2000) Selenium adsorption in soil as influenced by different anions, J. Plant Nutr. Soil Sc. 163, 577-582. [CrossRef] [Google Scholar]
  • Dowdle P.R., Oremland R.S. (1998) Microbial Oxidation of Elemental Selenium in Soil Slurries and Bacterial Cultures, Environ. Sci. Technol. 32, 3749-3755. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Duc M., Lefevre G., Fedoroff M., Jeanjean J., Rouchaud J.C., Monteil-Rivera F., Dumonceau J., Milonjic S. (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions, J. Environ. Radioactiv. 70, 61-72. [CrossRef] [Google Scholar]
  • Dumat C., Cheshire M.V., Fraser A.R., Shand C.A., Staunton S. (1997) The effect of removal of soil organic matter and iron on the adsorption of radiocaesium, E. J. Soil Sci. 48, 675-684. [CrossRef] [Google Scholar]
  • Dynes J.J., Huang P.M. (1997) Influence of organic acids on selenite sorption by poorly ordered aluminium hydroxides, Soil Sci. Soc. Am. J. 61, 772-783. [CrossRef] [Google Scholar]
  • Echevarria G., Vong P.C., Leclerc-Cessac E., Morel J.L. (1997) Bioavailability of technetium-99 as affected by plant species and growth, application form, and soil incubation, J. Environ. Qual. 26, 947-956. [CrossRef] [Google Scholar]
  • Elejalde C., Herranz M., Legarda F., Romero F. (2000) Determination and analysis of distribution coefficients of 137Cs in soils from Biscay (Spain), Environ. Pollut. 110, 157-164. [CrossRef] [PubMed] [Google Scholar]
  • Evans G.J., Hammad K.A. (1995) Radioanalytical studies of iodine behaviour in the environment, J. Radioanal, Nuc. Chem. 192, 239-247. [Google Scholar]
  • Fatoki O.S. (1997) Biomethylation in the natural environment: A review, S. Afr. J. Sci. 93, 366-370. [Google Scholar]
  • Fattahi M., Musikas C., Abbe J.C., Ben Said K., Delorme A. (1997) Chimie du Technetium. In: SUBATECH, Rapport d'activité 1994–1996, pp. 152-155. Laboratoire de Physique Subatomique et des Technologies Associées, Centre National de la Recherche Scientifique, Nantes. [Google Scholar]
  • Forsberg S., Rosen K., Brechignac F. (2001) Chemical availability of 137Cs and 90Sr in undisturbed lysimeter soils maintained under controlled and close-to-real conditions, J. Environ. Radioactiv. 54, 253-265. [CrossRef] [Google Scholar]
  • Frankenberger W.T., Karlson U. (1994) Microbial Volatilization of Selenium from Soils and Sediments. In: Selenium in the Environment (W.T. Frankenberger, S. Benson, Eds.) pp. 369-387. M. Dekker, New York. [Google Scholar]
  • Fuge R., Johnson C.C. (1986) The geochemistry of iodine, a review, Environ. Geochem. Health. 8, 31-54. [CrossRef] [PubMed] [Google Scholar]
  • Gu B., Schulz R. (1991) Anion retention in soil: application to reduce migration of buried technetium and iodine, A review. Rapport NUREG-CR-5464, U.S. Nuclear Regulatory Commission. [Google Scholar]
  • Guo L., Frankenberger W.T., Jury W.A. (1999) Adsorption and degradation of dimethyl selenide in soil, Environ. Sci. Technol. 33, 2934-2938. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Guivarch A., Hinsinger P., Staunton S. (1999) Root uptake and distribution of radiocaesium from contaminated soils and the enhancement of Cs adsorption in the rhizosphere, Plant and Soil 211, 131-138. [CrossRef] [Google Scholar]
  • Gutierrez M., Fuentes H.R. (1991) Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions, J. Environ. Radioactiv. 13, 271-282. [CrossRef] [Google Scholar]
  • Hakem N.L., Mhamid I., Apps J.A., Moridis G.J. (2000) Sorption of Cesium and Strontium on Hanford Soil, J. Radioanal. Nuc. Chem. 246, 275-278. [CrossRef] [Google Scholar]
  • Hansen D., Duda P.J., Zayed A., Terry N. (1998) Selenium removal by constructed wetland: role of biological volatilization, Environ. Sci. Technol. 32, 591-597. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Heninger I., Potin-Gautier M., Astruc M., Galvez L., Vignier V. (1998) Speciation of selenium and organotin compounds in sewage sludge applied to land, Chem. Spec. Bioavailab. 10, 1-10. [CrossRef] [Google Scholar]
  • Henrot J. (1989) Bioaccumulation and chemical modification of Tc by soil bacteria, Health Phys. 57, 239-245. [CrossRef] [PubMed] [Google Scholar]
  • Hird A.B., Rimmer D.L., Livens F.R. (1995) Total caesium fixing potential of acid organic soils, J. Environ. Radioactiv. 26, 103-118. [CrossRef] [Google Scholar]
  • Hsu C.N., Chang K.P. (1994) Sorption and desorption behavior of cesium on soil components, Appl. Radiat. Isotopes 45, 433-437. [CrossRef] [Google Scholar]
  • IAEA (1994) Handbook of Parameter Values for the Prediction of Radionuclide Transfer in the Terrestrial and Freshwater Environment. Technical Report series N° 364. International Atomic Energy Agency, Vienne. [Google Scholar]
  • IAEA (2001) Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. IAEA Safety Reports Series N° 19. International Atomic Energy Agency, Vienne. [Google Scholar]
  • Ishii N., Tagami K., Enomoto S., Uchida S. (2004) Influence of microorganisms on the behavior of technetium and other elements in paddy soil surface water, J. Environ. Radioactiv. 77, 369-380. [CrossRef] [Google Scholar]
  • Jacquier P., Meier P., Ly J. (2001) Adsorption of radioelements on mixtures of minerals. Experimental study, Appl. Geochem. 16, 85-93. [CrossRef] [Google Scholar]
  • Jayaweera G.R., Biggar J.W. (1996) Role of redox potential in chemical transformations of selenium in soils, Soil Sci. Soc. Am. J. 60, 1056-1063. [CrossRef] [Google Scholar]
  • Jensen B. (1980) The geochemistry of radionuclides with long half-lives. Their expected migration behavior. Rapport RISØE R-430, Risø National Laboratory, Denmark. [Google Scholar]
  • Kaplan D.I., Iverson G., Mattigod S., Parker K. (2000) 129I - Test and Research to Support Disposal Decisions. Rapport WSRC-TR-2000-00283, Pacific Northwest National Laboratory, Richland, US. [Google Scholar]
  • Kato H., Nakazawa T., Ueta S., Muroi M., Yasutomi I., Fujihara H. (1999) Effective Diffusivities of Iodine, Chlorine, and Carbon in Bentonite Buffer Material, Mat. Res. Soc. Symp. Proc. 556, 687-694. [CrossRef] [Google Scholar]
  • Keppler F., Borchers R., Elsner P., Fahimi I., Pracht J., Scholer H.F. (2003) Formation of volatile iodinated alkanes in soil: results from laboratory studies, Chemosphere 52, 477-483. [CrossRef] [PubMed] [Google Scholar]
  • Khan S.A., Reman R.U., Khan M.A. (1995) Adsorption of Cs(I), Sr(II) and Co(II) on Al2O3, J. Radioanal. Nuc. Chem. 190, 81-96. [CrossRef] [Google Scholar]
  • Krupka K.M., Serne R.J. (2002) Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments, Rapport PNNL-14126, Pacific Northwest Laboratory, US. DOE. [Google Scholar]
  • Landa E.R., Thorvig L.H., Gast R.G. (1977) Effect of selective dissolution, electrolytes, aeration, and sterilization on technetium-99 sorption by soils, J. Environ. Qual. 6, 181-187. [CrossRef] [Google Scholar]
  • Liu D.C., Hsu C.N., Chuang C. (1995) Ion-exchange and sorption kinetics of cesium and strontium in soils, Appl. Radiat. Isotopes 46, 839-846. [CrossRef] [Google Scholar]
  • Llyod J.R., Sole V.A., Van Praagh V.G., Lovley D.R. (2000) Direct and Fe(II)-Mediated Reduction of Technetium by Fe(III)-Reducing Bacteria, Appl. Environ. Microbiol. 66, 3743–3749. [CrossRef] [PubMed] [Google Scholar]
  • Losi M.E., Frankenberger W.T. (1998) Microbial oxidation and solubilization of precipitated elemental selenium in soil, J. Environ. Qual. 27, 836-843. [CrossRef] [Google Scholar]
  • Lu N., Mason C.F.V. (2001) Sorption-desorption behavior of strontium-85 onto montmorillonite and silica colloids, Appl. Geochem. 16, 1653-1662. [CrossRef] [Google Scholar]
  • Mao J., Xing B. (1999) Fractionation and Distribution of Selenium in Soils, Com. Soil Sci. Plant Anal. 30, 2437-2448. [CrossRef] [Google Scholar]
  • Martens D.A., Suarez D.L. (1997) Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry, Environ. Sci. Technol. 31, 133-139. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Mercier F., Moulin V., Guittet M.J., Barré N., Toulhoat N., Gautier-Soyer M., Toulhoat P. (2000) Applications of NAA, PIXE and XPS for the quantification and characterization of the humic substances/iodine association, Radiochim. Acta 88, 779-785. [CrossRef] [Google Scholar]
  • Müller H., Pröhl G. (1993) ECOSYS-87: A dynamic model for assessing radiological consequences of nuclear accident, Health Phys. 64, 232-250. [CrossRef] [PubMed] [Google Scholar]
  • Muramatsu Y., Yoshida S. (1995) Volatilization of methyl iodide from the sol-plant system, Atmos. Environ. 29, 21-25. [CrossRef] [Google Scholar]
  • Muramatsu Y., Yoshida S. (1996) Behaviour of iodine-129 in the soil-plant system. In: Proceedings of the International Symposium on Radioecology, 22nd-24th April 1996, Vienna. Ten Years Terrestrial Radioecological Research Following the Chernobyl Accident, pp. 207-214. Austrian Soil Science Society, Vienne. [Google Scholar]
  • Muramatsu Y., Uchida S., Sriyotha P., Sriyotha K. (1990) Some considerations on the sorption and desorption phenomena of iodide and iodate on soil, Water Air Soil Pollut. 49, 125-138. [CrossRef] [Google Scholar]
  • Muramatsu Y., Yoshida S., Fehn U., Amachi S., Ohmomo Y. (2004) Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment, J. Environ. Radioactiv. 74, 221-232 [CrossRef] [Google Scholar]
  • Neal R.H., Sposito G., Holtzclaw K.M., Traina S.J. (1987) Selenite adsorption on alluvial soils: I. Soil composition and pH effects, Soil Sci. Soc. Am. J. 51, 1161-1165. [CrossRef] [Google Scholar]
  • Page S.D. (1999) Understanding variation in partition coefficient, Kd, values. United States Office of Air and Radiation EPA 402-R-99-004A, Environmental Protection Agency, US. [Google Scholar]
  • Pezzarossa B., Piccotino D., Petruzzelli G. (1999) Sorption and desorption of selenium in different soils of the Mediterranean area, Com. Soil Sci. Plant Anal. 30, 2669-2680. [CrossRef] [Google Scholar]
  • Poinssot C., Baeyens B., Bradbury M.H. (1999) Experimental and modelling studies of caesium sorption on illite, Geochim. Cosmochim. Ac. 63, 3217-3227. [CrossRef] [Google Scholar]
  • Raja M.E., Babcock K.L. (1961) On the soil chemistry of iodine, Soil Sci. 91, 1-5. [CrossRef] [Google Scholar]
  • Rigol A., Vidal M., Rauret G. (2002) An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake, J. Environ. Radioactiv. 58, 191-216. [CrossRef] [Google Scholar]
  • Robeau D., Daburon F., Métivier H. (Eds.) (2000) Le césium de l'environnement à l'Homme, EDP Sciences, Les Ulis. [Google Scholar]
  • Robens E., Hauschild J., Aumann D.C. (1989) Iodine 129 in the environment of a nuclear fuel reprocessing plant: part 4. 129I and 127I in undisturbed surface soils, J. Environ. Radioactiv. 9, 17-29. [CrossRef] [Google Scholar]
  • Roden E.E., Leonardo M.R., Ferris F.G. (2002) Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction, Geochim. Cosmochim. Ac. 66, 2823-2839. [CrossRef] [Google Scholar]
  • Rosentreter J.J., Nieves R., Kalivas J., Rousseau J.P., Bartholomay R.C. (1999) The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho. Rapport DOE/ID-22157. U.S. Geological Survey, Idaho Falls, ID (US). [Google Scholar]
  • Roussel-Debet S. (2004) Caractérisation opérationnelle du comportement des radionucléides dans les sols. Rapport IRSN/DEI/SECRE n° 04-32 (Octobre 2004), Institut de Radioprotection et de Sûreté Nucléaire, France. [Google Scholar]
  • Saas A., Grauby A. (1976) An approach to investigations on the behaviour of iodine 129 in the atmosphere-soil-plant system, Health Phys. 31, 21-26. [CrossRef] [PubMed] [Google Scholar]
  • Sanchez A.L., Smolders E., Van den Brande K., Merckx R., Wright S.M., Naylor C. (2002) Predictions of in situ solid/liquid distribution of radiocaesium in soils, J. Environ. Radioactiv. 63, 35-47. [CrossRef] [Google Scholar]
  • Schwartz C., Walter C., Claudot B., Aurousseau P., Bouedo T. (1995) Synthèse nationale des analyses de terre. Rapport de fin de contrat. AFES - DERF, Association Française pour l’Étude des sols, Orléans, France. [Google Scholar]
  • Seby F., Potin-Gautier M., Giffaut E., Donard O.F.X. (1998) Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastes to the biosphere, Analusis 26, 193-198. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sekine T., Asai N., Mine T., Yoshihara K. (1997) Complexation of technetium traces with humic acid, Radiochem. 39, 309-311. [Google Scholar]
  • Sharmasarkar S., Vance G. (2002) Selenite–selenate sorption in surface coal mine environment, Adv. Environ. Res. 7, 87-95. [CrossRef] [Google Scholar]
  • Sheppard S.C. (2003) Interpolation of solid/liquid partition coefficients, Kd, for iodine in soils, J. Environ. Radioactiv. 70, 21-27. [CrossRef] [Google Scholar]
  • Sheppard M.I., Hawkins J.L. (1995) Iodine and microbial interactions in an organic soil, J. Environ. Radioactiv. 29, 91-109. [CrossRef] [Google Scholar]
  • Sheppard M.I., Thibault D.H. (1990) Default soil/liquid partition coefficients, Kds, for four major soil types: a compendium, Health Phys. 59, 471-482. [PubMed] [Google Scholar]
  • Sheppard S.C., Sheppard M.I., Evenden W.G. (1990) A novel method used to examine variation in Tc sorption among 34 soils, aerated and anoxic, J. Environ. Radioactiv. 11, 215-233. [CrossRef] [Google Scholar]
  • Sheppard M.I., Thibault D.H., McMurry J., Smith P.A. (1995) Factors affecting the soil sorption of iodine, Water Air Soil Pollut. 83, 51-67. [CrossRef] [Google Scholar]
  • Sheppard M.I., Hawkins J., Smith P.A. (1996) Linearity of Iodine sorption and sorption capacities for seven soils, J. Environ. Qual. 25, 1261-1267. [CrossRef] [Google Scholar]
  • Sheppard M.I., Motycka M., Smith P.A. (1997) Soil sorption of Iodine: effects of pH and enzymes. AECL Technical report 777, Atomic Energy of Canada Limited, Canada. [Google Scholar]
  • Stalmans M., Maes A., Cremers A. (1996) Role of organic matter as a geochemical sink for technetium in soils and sediments. In: Technetium in the environment (G. Desmet, C. Myttenaere, Eds.) pp. 91-114. Elsevier Applied Science Publishers, London. [Google Scholar]
  • Staunton S. (1994) Adsorption of radiocaesium on various soils: interprétation and consequences of the effect of soil – solution ratio and solution composition on the distribution coefficient, Eur. J. Soil Sci. 45, 409-418. [CrossRef] [Google Scholar]
  • Staunton S., Dumat C., Zsolnay A. (2002) Possible role of organic matter in radiocaesium adsorption in soils, J. Environ. Radioactiv. 58, 163-173. [CrossRef] [Google Scholar]
  • Su C., Suarez D.L. (2000) Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study, Soil Sci. Soc. Am. J. 64, 101-111. [CrossRef] [Google Scholar]
  • Szenknect S. (2003) Transfert de radioéléments en zone non saturée. Étude expérimentale et modélisation appliquées au Site Pilote de Tchernobyl. Thèse Université Joseph Fourier – Grenoble I – Spécialité Sciences de la Terre et de l'Univers - 7 octobre 2003. [Google Scholar]
  • Tagami K., Uchida S. (1999) Chemical transformation of technetium in soil during the change of soil water conditions, Chemosphere 38, 963-972. [CrossRef] [Google Scholar]
  • Thibault D.H., Sheppard M.I., Smith P.A. (1990) A critical compilation and review of default soil solid/liquid partition coefficients Kd, for use in environmental assessments. Rapport AECL - 10125 ROE1L0. Atomic Energy of Canada Limited, Canada. [Google Scholar]
  • Toso J.P., Velasco R.H. (2001) Describing the observed vertical transport of radiocesium in specific soils with three time-dependent models, J. Environ. Radioactiv. 53, 133-144. [CrossRef] [Google Scholar]
  • Trivedi P., Axe L. (1999) A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides, J. Colloid. Interf. Sci. 218, 554-563. [CrossRef] [Google Scholar]
  • Valcke E., Cremers A. (1994) Sorption-desorption dynamics of radiocaesium in organic matter soils, Sci. Tot. Environ. 157, 275-283. [CrossRef] [Google Scholar]
  • van der Perk M., Lev T., Gillett A.G., Absalom J.P., Burrough P.A., Crout N.M.J., Garger E.K., Semiochkina N., Stephanishin Y.V., Voigt G. (2000) Spatial modelling of transfer of long-lived radionuclides from soil to agricultural products in the Chernigov region, Ukraine, Ecol. Model. 128, 35-50. [CrossRef] [Google Scholar]
  • Vilks P., Baik M.H. (2001) Laboratory migration experiments with radionuclides and natural colloids in a granite fracture, J. Cont. Hydrol. 47, 197-210. [CrossRef] [Google Scholar]
  • Wang X., Dong W., Li Z., Du J., Tao Z. (2000) Sorption and desorption of radiocesium on red earth and its solid components: relative contribution and hysteresis, Appl. Radiat. Isotopes 52, 813-819. [CrossRef] [Google Scholar]
  • Whitehead D.C. (1973) Studies on iodine in British soils, J. Soil Sci. 24, 260-270. [CrossRef] [Google Scholar]
  • Whitehead D.C. (1979) Iodine in the UK environment with particular reference to agriculture, J. Appl. Ecol. 16, 269-279. [CrossRef] [Google Scholar]
  • Wildung R.E., Cataldo D.A., Garland T.R. (1985) Volatilization of iodine from soils and plants. In: Speciation of fission and activation products in the environment (R.A. Bulman, J.R. Cooper, Eds.) pp. 244-249. Elsevier Applied Science Publishers, London. [Google Scholar]
  • Wu L., Van Mantgem P.J., Guo X. (1996) Effects of Forage Plant and Field Legume Species on Soil Selenium Redistribution, Leaching, and Bioextraction in Soils Contaminated by Agricultural Drain Water Sediment, Arch. Environ. Con. Tox. 31, 329-338. [CrossRef] [Google Scholar]
  • Yamada H., Kase Y., Usuki M., Kajiyama S., Yonebayashi K. (1999) Selective Determination and Formation of Elemental Selenium in Soils, Soil Sci. Plant Nut. 45, 403-408. [Google Scholar]
  • Yasuda H., Uchida S., Muramatsu Y., Yoshida S. (1995) Sorption of manganese, cobalt, zinc, strontium and cesium onto agricultural soils: statistical analysis on effect on soil properties, Water Air Soil Pollut. 83, 85-96. [CrossRef] [Google Scholar]
  • Yoshida S., Muramatsu Y., Uchida S. (1992) Studies on the sorption of I (iodide) and IO3(iodate) onto andosols, Water Air Soil Pollut. 63, 321-329. [CrossRef] [Google Scholar]
  • Yoshida S., Muramatsu Y., Uchida S. (1998) Soil-solution distribution coefficients, Kd's, of I and IO3for 68 Japanese soils, Radiochim. Acta 82, 293-297. [Google Scholar]
  • Yoshihara K. (1996) Technetium in the Environment, Top. Curr. Chem. 176, 17-36. [Google Scholar]
  • Yu C., Orlandini K.A., Cheng J.J., Biwer B.M. (2001) Assessing the Impact of Hazardous constituents on the Mobilization, Transport, and Fate of Radionuclides in RCRA Waste Disposal Units. Rapport ANL/EAD/TM-93, Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois. [Google Scholar]
  • Zhang P., Sparks D.L. (1990) Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface, Environ. Sci. Technol. 24, 1848-1856. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Zhang Y.Q., Frankenberger W.T. (1999) Effects of Soil Moisture, Depth, and Organic Amendments on Selenium Volatilization, J. Environ. Qual. 28, 1321-1326. [CrossRef] [Google Scholar]
  • Zhang Y.Q., Frankenberger W.T., Moore J.N. (1999) Effect of Soil Moisture on Dimethylselenide Transport and Transformation to Nonvolatile Selenium, Environ. Sci. Technol. 33, 3415-3420. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.