Accès gratuit
Volume 54, Numéro 2, April–June 2019
Page(s) 125 - 132
Publié en ligne 27 mai 2019
  • Abella V, Miró R, Juste B, Verdú G. 2010. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method. Appl. Radiat. Isot. 68: 709–713. [CrossRef] [PubMed] [Google Scholar]
  • Ai-Dong W, Yi-Can W, Sheng-Xiang T, Jiang-Hui Z. 2005. Effect of CT image-based voxel size on Monte Carlo dose calculation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6: 6449–6451. [PubMed] [Google Scholar]
  • Bouzid D, Bert J, Dupre P-F., Benhalouche S, Pradier O, Boussion N, Visvikis D. 2015. Monte-Carlo dosimetry for intraoperative radiotherapy using a low energy x-ray source. Acta Oncol. (Madr) 54: 1788–1795. [CrossRef] [PubMed] [Google Scholar]
  • Candela-Juan C, Perez-Calatayud J, Ballester F, Rivard MJ. 2013. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma. Med. Phys. 40: 033901. [CrossRef] [PubMed] [Google Scholar]
  • Chetty IJ, Rosu M, Kessler ML, Fraass BA, Ten Haken RK, Kong FMS, McShan DL. 2006. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 65: 1249–1259. [CrossRef] [PubMed] [Google Scholar]
  • Figueira C, Becker F, Blunck C, DiMaria S, Baptista M, Esteves B, Paulo G, Santos J, Teles P, Vaz P. 2013. Medical staff extremity dosimetry in CT fluoroscopy: An anthropomorphic hand voxel phantom study. Phys. Med. Biol. 58: 5433–5448. [CrossRef] [PubMed] [Google Scholar]
  • ICRP. 2009. ICRP Publication 110: Realistic reference phantoms: An ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann. ICRP 39: 1–164. [Google Scholar]
  • Marcatili S, Villoing D, Mauxion T, McParland BJ, Bardiès M. 2015. Model-based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches. Med. Phys. 42: 1288–1296. [CrossRef] [PubMed] [Google Scholar]
  • Mora G, Pawlicki T, Maio A, Ma C-M. 2001. Effect of voxel size on Monte Carlo dose calculations for radiotherapy treatment planning. In: Adv. Monte Carlo Radiat. Phys., Part. Transp. Simul. Appl., pp. 549–554. Berlin, Heidelberg: Springer. [Google Scholar]
  • Perrot Y, Degoul F, Auzeloux P, Bonnet M, Cachin F, Chezal JM, Donnarieix D, Labarre P, Moins N, Papon J, Rbah-Vidal L, Vidal A, Miot-Noirault E, Maigne L. 2014. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand. Phys. Med. Biol. 59: 2183–2198. [CrossRef] [PubMed] [Google Scholar]
  • Sarrut D, Guigues L. 2008. Region-oriented CT image representation for reducing computing time of Monte Carlo simulations. Med. Phys. 35: 1452–1463. [CrossRef] [PubMed] [Google Scholar]
  • Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang J-M, Loudos G, Maigne L, Marcatili S, Mauxion T, Papadimitroulas P, Perrot Y, Pietrzyk U, Robert C, Schaart DR, Visvikis D, Buvat I. 2014. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med. Phys. 41: 064301. [CrossRef] [PubMed] [Google Scholar]
  • Schneider W, Bortfeld T, Schlegel W. 2000. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45: 459–478. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.