Accès gratuit
Numéro |
Radioprotection
Volume 53, Numéro 4, October-December 2018
|
|
---|---|---|
Page(s) | 255 - 263 | |
DOI | https://doi.org/10.1051/radiopro/2018032 | |
Publié en ligne | 12 novembre 2018 |
- Ademola KA, Bello KA, Adejumobi CA. 2014. Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. J. Radiat. Res. Appl. Sci. 7: 249–255. [Google Scholar]
- Beck HL. 1972. The absolute intensities of gamma rays from the decay of 238U and 232Th. Health and Safety Laboratory Report HASL-262. New York: U.S. Atomic Energy Commission. [Google Scholar]
- Beck HL, DeCampo J, Gogolak C. 1972. In-situ Ge(Li) and NaI(T1) gamma-ray spectrometry. Health and Safety Laboratory Report HASL-258. New York: U.S. Atomic Energy Commission. [Google Scholar]
- EPA. 2009. Sources of background radioactivity. http://www.epa.gov/radiation/marssim/docs/marsame/appendix.B.pdf. Accessed 9 August 2011. [Google Scholar]
- Guembou Shouop SJ, Ndontchueng Moyo M, Chene G, Nguelem Mekontso EJ, Motapon Ousmanou, Kayo AS, Strivay D. 2017. Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral Region of Cameroon using gamma spectrometry. Environ. Earth Sci. 76: 1–12. [Google Scholar]
- Hosoda M, Tokonami S, Omori Y, Sahoo SK, Akiba S, Sorimachi A, Ishikawa T, Nair RR, Jayalekshmi PA, Sebastian P, Iwaoka K, Akata N, Kudo H. 2015. Estimation of external dose by car-borne survey in Kerala, India. Plos ONE 10: e0124433. [Google Scholar]
- Hosoda M, Inoue K, Oka M, Omori Y, Iwaoka K, Tokonami S. 2016. Environmental radiation monitoring and external dose estimation in Aomori prefecture after the Fukushima Daiichi Nuclear Power Plant accident. Jpn. J. Health Phys. 51: 41–50. [CrossRef] [Google Scholar]
- IAEA. 1989. Measurement of radionuclides in food and the environment, a guidebook. International Atomic Energy Agency Technical Reports Series No. 229, Vienna. [Google Scholar]
- Inoue K, Hosoda M, Fukushi M, Furukawa M, Tokonami S. 2015. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident. Radiat. Prot. Dosim.167: 231–234. [Google Scholar]
- Inoue K, Arai M, Fujisawa M, Saito K, Fukushi M. 2017. Detailed distribution map of absorbed dose rate in air in Tokatsu area of Chiba prefecture, Japan, constructed by car-borne survey 4 years after the Fukushima Daiichi Nuclear Power Plant accident. Plos ONE 12: e0171100. [CrossRef] [PubMed] [Google Scholar]
- Jacob P, Paretzke HG, Rosenbaum H, Zankl M. 1986. Effective dose equivalents for photon exposure from plane sources on the ground. Radiat. Prot. Dosim. 14: 299–310. [Google Scholar]
- JCGM 100. 2008. Joint Committee for Guides in Metrology. Evaluation of measurement data-guide to the expression of uncertainty in measurement, September 2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed 19 August 2016. [Google Scholar]
- Kocher DC, Sjoreen AL. 1985. Dose-rate conversion factors for external exposure to photon emitters in soil. Health Phys. 48: 193–205. [CrossRef] [PubMed] [Google Scholar]
- Leung KC, Lau SY, Poon CB. 1990. Gamma radiation dose from radionuclides in Hong Kong soil. J. Environ. Radioact. 11: 279–290. [Google Scholar]
- Matsuda H, Furukawa S, Kaminishi T, Minato S. 1982. A new method for evaluating weak leakage gamma-ray dose using a 3”φ × 3” NaI(Tl) scintillation spectrometer (I) Principle of background estimation method. Rep Government Industrial Research Institute. Nagoya 31: 132–146. In Japanese. [Google Scholar]
- Matsuda H, Minato S, Pasquale V. 2002. Evaluation of accuracy of response matrix method for environmental gamma ray analysis. Radioisotopes 51: 42–50. In Japanese. [Google Scholar]
- Minato S. 1971. Terrestrial gamma-radiation field in natural environment. J. Nucl. Sci. Technol. 8: 342–347. [Google Scholar]
- Minato S. 1977. Analysis of the variation of environmental γ radiation during rainfall. Rep Government Industrial Research Institute. Nagoya 26: 190–202. In Japanese. [Google Scholar]
- Minato S. 1978. A response matrix of a 3”φ × 3” NaI(Tl) scintillator for environmental gamma radiation analysis. Rep Governmental Industrial Research Institute. Nagoya 27: 384–397. In Japanese. [Google Scholar]
- Minato S. 1980. Monte Carlo calculation of gamma radiation field due to precipitation washout of radon daughters from the atmosphere to the ground surface. Jpn. J. Health Phys. 15: 19–24. [CrossRef] [Google Scholar]
- Minato S. 2001. Diagonal elements fitting technique to improve response matrixes for environmental gamma ray spectrum unfolding. Radioisotopes 50: 463–471. [Google Scholar]
- Minato S. 2012. Application of a 60 × 60 response matrix for a NaI(Tl) Scintillator to fallout from the Fukushima reactor accident. Radiat. Emerg. Med. 1: 108–112. [Google Scholar]
- Minato S, Kawano M. 1970. Evaluation of exposure due to terrestrial gamma-radiation by response matrix method. J. Nucl. Sci. Technol. 7: 401–406. [Google Scholar]
- Moriuchi S, Tsutsumi M, Saito K. 1990. Examination on conversion factors to estimate effective dose equivalent from absorbed dose in air for natural gamma radiations. Jpn. J. Health Phys. 25: 121–128. Japanese with English abstract. [Google Scholar]
- Ndontchueng MM, Njinga RL, Nguelem EJM, Simo A, Beyala Ateba JF. 2014. 238U, 235U, 137Cs and 133Xe in soils from two campuses in University of Douala-Cameroon. Appl. Radiat. Isot. 86: 85–89. [Google Scholar]
- Ngoa EL, Ndjana NJE, Hosoda M, Bongue D, Saïdou, Akata N, Koukong HR, Kwato NMG, Tokonami S. 2017. Air absorbed dose rate measurements and external dose assessment by car-borne survey in the gold mining areas of Betare-Oya, Eastern-Cameroon. Jpn. J. Health Phys. 53: 5–11. [Google Scholar]
- Ojo TJ, Gbadegesin KAJ. 2015. Terrestrial radiation doses from selected towns of Southwestern Nigeria. Int. J. Phys. 3: 244–247. [Google Scholar]
- Olivry CJ. 1986. Fleuves et rivières du Cameroun. Collection Monographies Hydrologiques. Paris : ORSTOM, no 9. [Google Scholar]
- Ravisankar R, Vanasundari K, Chandrasekaran A, Suganya M, Eswaran P, Vijayagopal P, Meenakshisundaram V. 2011. Measurement of natural radioactivity in brick samples of Namakkal, Tamilnadu, India using gamma ray spectrometry. Arch. Phys. Res. 2: 95–99. [Google Scholar]
- Saïdou, Abdourahimi, Tchuente Siaka YF, Kwato Njock MG. 2015a. Natural radiation exposure to the public in the oil bearing Bakassi Peninsula, Cameroon. Radioprotection 50(1): 35–41. [Google Scholar]
- Saïdou, Ele Abiama P, Tokonami S. 2015b. Comparative study of natural radiation exposure to the public in three uranium and oil regions of Cameroon. Radioprotection 50(4): 265–271. [Google Scholar]
- Tan VL, Inoue K, Fujisawa M, Arai M, Fukushi M. 2017. Impact on absorbed dose rate in air from Asphalt Pavement Associated with Transport Infrastructure Developments on Phu Quoc Island, Vietnam. Radiat. Environ. Med. 2: 88–93. [Google Scholar]
- Turhan S, Arıkan IH, Oğuz F, Ӧzdemir T, Yücel B, Varinlioğlu A, Köse A. 2012. Car-borne survey of natural background gamma dose rate in Çanakkale region, Turkey. Radiat. Prot. Dosim. 148: 45–50. [Google Scholar]
- UNSCEAR. 1982. Ionizing radiation sources and biological effects. United Nations, New York. [Google Scholar]
- UNSCEAR. 2000. Report to the general assembly, with scientific annexes. Annex B exposures from natural radiation sources. New York Report of the United Nations Scientific. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.