Accès gratuit
Numéro
Radioprotection
Volume 53, Numéro 4, October-December 2018
Page(s) 265 - 278
DOI https://doi.org/10.1051/radiopro/2018030
Publié en ligne 11 octobre 2018
  • Ackers JG, Bosnjakovic BFM, Straekee L. 1984. Limitation of radioactivity concentrations in building materials based on a practical calculation model. Radiat. Prot. Dosim. 7(1–4): 413–416. [CrossRef] [Google Scholar]
  • Ademola JA, Farai IP. 2005. Annual effective dose due to natural radionuclides in building blocks in eight cities of southwestern Nigeria. Radiat. Prot. Dosim. 114(4): 524–526. [CrossRef] [Google Scholar]
  • Aders JG, Den Boier JF, De Jong P, Wolschrijn RA. 1985. Radiation and radon exhalation rates of building materials in the Netherlands. Sci. Total. Environ. 45: 15–165. [Google Scholar]
  • Ahmad N, Matiullah, Hussein AJA. 1997. Natural radioactivity in Jordanian building materials and the associated radiation hazards. J. Environ. Radioact. 39: 9–22. [Google Scholar]
  • Ahmed N, Hussein A. 1998. Natural radioactivity in Gordanian soil and building materials and the associated radiation hazards. J. Environ. Radioact. 39: 9–22. [Google Scholar]
  • Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM. 1999. The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. J. Environ. Radioact. 46: 243–250. [Google Scholar]
  • Amrani D, Tahtat M. 2001. Natural radioactivity in Algerian building materials. Appl. Radiat. Isot. 54: 687–689. [CrossRef] [PubMed] [Google Scholar]
  • Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YBM. 2015. Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings. PLoS ONE 10(10): e0140667. [Google Scholar]
  • Baykara O, Karatepe S. 2011. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiat. Meas. 46: 153–158. [Google Scholar]
  • Beretka J, Mathew PJ. 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48(1): 87–95. [CrossRef] [PubMed] [Google Scholar]
  • Bou-Rabee F, Bem H. 1996. Natural radioactivity in building materials utilized in the state of Kuwait. J. Radioanal. Nucl. Chem. 213(2): 143–149. [Google Scholar]
  • Brigido Flores O, Montalvan Estrada A, Rosa Suarez R, Tomas Zerquera J, Hernandez Perez A. 2008. Natural radionuclide content in building materials and gamma dose rate in dwellings in Cuba. J. Environ. Radioact. 99: 1834–1837. [CrossRef] [PubMed] [Google Scholar]
  • Chandrasekaran A, Ravisankar R, Senthilkumar G, Thillaivelavand K, Dhinakaran B, Vijayagopal P, Bramha SN, Venkatraman B. 2014. Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt. J. Basic Appl. Sci. 1: 38–48. [CrossRef] [Google Scholar]
  • Cosma C, Apostu A, Georgescu D, Begy R. 2009. Evaluation of the radioactivity for different types of cements used in Romania. Rom. J. Mater. 39(2): 134–139. [Google Scholar]
  • Dabayneh K. 2007. Radioactivity measurements in different types of fabricated building materials used in Palestine. Arab J. Nucl. Sci. Appl. 40(3): 207. [Google Scholar]
  • ECOSIT3. 2013. (Troisième enquête sur la consommation et le secteur informel au Tchad). http://www.inseedtchad.com/IMG/pdf/ecosit3-rapport_principal_sur_la_pauvrete_tchad_2011_version_publiee-2.pdf. [Google Scholar]
  • El-Galy MM, El Mezayn AM, Said AF, El Mowafy AA, Mohamed MS. 2008. Distribution and environmental impacts of some radionuclides in sedimentary rocks at Wadi Naseib area, southwest Sinai, Egypt. J. Environ. Radioact. 99: 1075–1082. [CrossRef] [PubMed] [Google Scholar]
  • El-Mageed AIA, Farid MEA, Saleh EE, Mansour M, Mohammed AK. 2014. Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. J. Geochem. Explor. 140: 41–45. [Google Scholar]
  • El-Taher A. 2010. Gamma spectroscopic analysis and associated radiation hazards of building materials used in Egypt. Radiat. Prot. Dosim. 138(2): 158–165. [CrossRef] [Google Scholar]
  • El-Taher A. 2012. Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim area, Saudi Arabia. Rom. J. Phys. 57(3–4): 726–735. [Google Scholar]
  • Ettenhuber E, Lehmann R. 1986. The collective dose equivalent due to the naturally occurring radionuclides in building materials in the German Democratic Republic. Part 1: external exposure. Health Phys. 50(1): 49–56. [CrossRef] [PubMed] [Google Scholar]
  • European Commission (EC). 1999. Report on radiological protection principles concerning the natural radioactivity of building materials, radiation protection No. 112. Directorate-General Environment, Nuclear Safety and Civil Protection. [Google Scholar]
  • Faheem M, Mujahid SA. 2008. Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province. Pak. Radiat. Meas. 43(8): 1443–1447. [CrossRef] [Google Scholar]
  • Guembou Shouop CJ, Ndontchueng Moyo M, Chene G, Jilbert Nguelem Mekontso E, Motapon O, Kayo SA, Strivay D. 2017a. Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral Region of Cameroon, using gamma spectrometry. Environ. Earth Sci. 76:164. [Google Scholar]
  • Guembou Shouop CJ, Samafou P, Moyo MN, Chene G, Mekongtso EJN, Ebongue AN, Motapon O, Strivay D. 2017b. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. Methods X 4: 42–54. [Google Scholar]
  • Hayumbu P, Zaman MB, Luhaba NCH, Munsanje SS, Nuleya D. 1995. Natural radioactivity in Zambian building materials collected from Lusaka. J. Radioanal. Nucl. Chem. 199: 229–238. [Google Scholar]
  • Ibrahim N. (1999). Natural activity of 238 U, 232 Th and 40 K in building materials. J. Environ Radioact. 43: 555–558. [Google Scholar]
  • ICRP. 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21(1–3). [Google Scholar]
  • INSEED (Institut national de la statistique, des études économiques et démographiques). 2009. Deuxième recensement général de la population et de l’habitat (RGPH2, 2009), http://www.ambtchad-altun.com. [Google Scholar]
  • Khatibeh AJAH, Maly A, Ahmad N, Matiullah J. 1997. Natural radioactivity in Jordanian construction materials. Radiat. Prot. Dosim. 69(2): 143–147. [CrossRef] [Google Scholar]
  • Koblinger L. 1984. Calculation of exposure rates from gamma sources in walls of dwelling rooms. Health Phys. 34: 459–463. [Google Scholar]
  • Li Y, Lu X, Zhang X. 2016. Radiological hazard assessment of cement and sand used for construction of dwellings in Dingxi, China. Rom. J. Phys. 61(9–10): 1617–1625. [Google Scholar]
  • Malanca A, Pessina V, Dallara G, Luce CN, Gaidol L. 1993. Natural radioactivity in building materials from the Brazilian state of Espirito Santo. Appl. Radiat. Isot. 46: 1387–1392. [Google Scholar]
  • Mahmoud Pashazadeh A, Aghajani M, Nabipour I, Assadi M. 2014. Annual effective dose from environmental gamma radiation in Bushehr city. J. Environ. Health Sci. Eng. 12: 4. [Google Scholar]
  • Mantazul IC, Alam MN, Ahmed AK. 1998. Concentration of radionuclieds in building and ceramic materials of Bangladish and evaluation of radiation hazard. J. Radioanal. Nucl. Chem. 231: 117–122. [Google Scholar]
  • Mavi B, Akkurt I. 2010. Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Rad. Phys. Chem. 79: 933–937. [CrossRef] [Google Scholar]
  • NEA-OECD. 1979. Exposure to radiation from natural radioactivity in building materials, Report by NEA Group of Experts, OECD, Paris. [Google Scholar]
  • Ngachin M, Garavaglia M, Giovani C, Kwato Njock, Noureldine. 2007. Assessment of natural radioactivity and associated radiation hazards in some Cameronian building materials. Radiat. Meas. 42: 64–67. [Google Scholar]
  • Oyamta B, Bayang D, Mianyo D. 2013. Étude sur les Ressources minières et pétrolières dans le Mayo Kebbi Ouest Tchad. Accessed July 31, 2018, on https://www.peaceresources.net/files/docs/publications/Rapport_Etude_Ressources_mines_MKO_25-06-2013.pdf. [Google Scholar]
  • Pinnock WR. 1991. Measurements of radioactivity in Jamaican building materials and dose equivalents in a prototype red mud house. Health Phys. 61(5): 647–651. [CrossRef] [PubMed] [Google Scholar]
  • Raghu Y, Harikrishnan N, Chandrasekaran A, Ravisankar R. 2015. Assessment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai Dist, Tamilnadu, India. Afr. J. Basic Appl. Sci. 7(1): 16–25. [Google Scholar]
  • Ravisankar R, Vanasundari K, Chandrasekaran A, Rajalakshmi A, Suganya M, Vijayagopal P, Meenakshisundara V. 2012. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Radiat. Isot. 70: 699–704. [CrossRef] [PubMed] [Google Scholar]
  • Rizzo S, Brai M, Basile S, Bellia S, Hauser S. 2001. Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radoon levels in Sicily. Appl. Radiat. Isot. 55: 259–265. [CrossRef] [PubMed] [Google Scholar]
  • Shams A, Issa M, Alaseri SM. 2015. Determination of natural radioactivity and associated radiological risk in building materials used in Tabuk Area, Saudi Arabia. Int. J. Adv. Sci. Technol. 82: 45–62. [CrossRef] [Google Scholar]
  • Stoulos S, Manolopoulo M, Papastefanou C. 2003. Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J. Environ. Radioact. 69: 225–240. [CrossRef] [PubMed] [Google Scholar]
  • Tufail M, Ahmed N, Mirza SM, Khan HA. 1992. Natural radioactivity from building materials used in Islamabad and Rawalpindi, Pakistan. Sci. Total Environ. 121: 282–291. [Google Scholar]
  • Turhan S, Baykan UN, Sen K. 2008. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J. Radiol. Prot. 28: 83–91. [CrossRef] [PubMed] [Google Scholar]
  • Ugbede F, Echeweozo E. 2017. Estimation of annual effective dose and excess lifetime cancer risk from background ionizing radiation levels within and around quarry site in Okpoto-Ezillo, Ebonyi State, Nigeria. J. Environ. Earth Sci. ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online). [Google Scholar]
  • UNSCEAR. 1977. United Nations Scientific Committee on the Effects of Atomic Radiation, 1977. Sources, effects and risks of ionizing radiation. Report to the General Assembly with Annex B: natural sources of radiation. United Nations, New York. [Google Scholar]
  • UNSCEAR. 1988. United Nations Scientific Committee on the effects of atomic radiation, sources and effects of ionizing radiation. Report to the General Assembly with Annexes, United Nations, New York. [Google Scholar]
  • UNSCEAR. 1993. United Nations Scientific Committee on the Effects of Atomic Radiation, 1993. Sources, effects and risks of ionizing radiation. Report to the General Assembly with Annex A: exposures from natural sources of radiation. United Nations, New York. [Google Scholar]
  • UNSCEAR. 2000. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. Sources, effects and risks of ionizing radiation. Report to the General Assembly with Annex B: exposures from natural sources of radiation. United Nations, New York. [Google Scholar]
  • UNSCEAR. 2010. United Nations Scientific Committee on the effects of atomic radiation, sources and effects of ionizing radiation. Report to the General Assembly with Annexes, United Nations, New York. [Google Scholar]
  • Xinwei L, Yang G, Ren C. 2012. Natural radioactivity and radiological hazards of building materials in Xianyang, China. Rad. Phys. Chem. 81780–81784. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.