Numéro |
Radioprotection
Volume 55, Numéro 2, April-June 2020
|
|
---|---|---|
Page(s) | 123 - 134 | |
DOI | https://doi.org/10.1051/radiopro/2020006 | |
Publié en ligne | 27 mars 2020 |
Article
A new Monte Carlo tool for organ dose estimation in computed tomography
1
CEA, List,
91191
Gif-sur-Yvette, France
2
Service de physique médicale, Gustave-Roussy,
94805
Villejuif, France
* Corresponding author: Cindy.LELOIREC@cea.fr
Received:
18
March
2019
Accepted:
21
February
2020
The constant increase of computed tomography (CT) exams and their major contribution to the collective dose led to international concerns regarding patient dose in CT imaging. Efforts were made to manage radiation dose in CT, mostly with the use of the CT dose index (CTDI). However CTDI does not give access to organ dose information, while Monte Carlo (MC) simulation can provide it if detailed information of the patient anatomy and the source are available. In this work, the X-ray source and the geometry of the GE VCT Lightspeed 64 were modelled, based both on the manufacturer technical note and some experimental data. Simulated dose values were compared with measurements performed in homogeneous conditions with a pencil chamber and then in CIRS ATOM anthropomorphic phantom using both optically stimulated luminescence dosimeters (OSLD) for point doses and XR-QA Gafchromic® films for relative dose maps. Organ doses were ultimately estimated in the ICRP 110 numerical female phantom and compared to data reported in the literature. Comparison of measured and simulated values show that our tool can be used for a patient specific and organ dose oriented radiation protection tool in CT medical imaging.
Key words: Monte Carlo simulation / computed tomography / organ dose
© SFRP, 2020
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.