Open Access
Issue
Radioprotection
Volume 57, Number 3, July - September 2022
Page(s) 189 - 199
DOI https://doi.org/10.1051/radiopro/2022023
Published online 22 August 2022
  • Bertho A, Dos Santos M, François A, Milliat F. 2020. Radiobiologie des très fortes doses par fraction : connaissances en 2020 et nouvelles modélisations précliniques. Radioprotection 56(1): 11–24. [Google Scholar]
  • Boice JD. 2017. The linear no-threshold (LNT) model as used in radiation protection: an NCRP update. Int. J. Radiat. Biol. 93(10): 1079–1092. [CrossRef] [PubMed] [Google Scholar]
  • Bourguignon M. 2021. De nouvelles questions essentielles en radioprotection [New critical questions in radiological protection]. Radioprotection 56(1): 9–10. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Bourguignon M. 2022. Vers de nouvelles recommandations en radioprotection : la CIPR en marche [Towards new recommendations in radiological protection: ICRP on the move]. Radioprotection 57(2): 91–92. [CrossRef] [EDP Sciences] [Google Scholar]
  • Calabrese EJ. 2017. The threshold vs LNT showdown: Dose rate findings exposed flaws in the LNT model part 2. How a mistake led BEIR I to adopt LNT. Environ. Res. 154: 452–458. [CrossRef] [Google Scholar]
  • Calabrese EJ. 2018. From Muller to mechanism: How LNT became the default model for cancer risk assessment. Environ. Pollut. 241: 289–302. [CrossRef] [Google Scholar]
  • Calabrese EJ. 2019. The linear No-Threshold (LNT) dose response model: A comprehensive assessment of its historical and scientific foundations. Chem. Biol. Interact. 301: 6–25. [CrossRef] [Google Scholar]
  • Calabrese EJ. 2021. Ethical failings: The problematic history of cancer risk assessment. Environ. Res. 193: 110582. [CrossRef] [Google Scholar]
  • Cardarelli JJ, Ulsh BA. 2018. It is time to move beyond the linear no-threshold theory for low-dose radiation protection dose response. Dose Response 16(3). [Google Scholar]
  • Cardis E, et al. 2007. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res. 167(4): 396–416. [CrossRef] [PubMed] [Google Scholar]
  • Clarke RH. 2003. Changing philosophy in ICRP: the evolution of protection ethics and principles. Int. J. Low Radiat. 1: 39–49. [CrossRef] [Google Scholar]
  • Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson CM, Cousins C, Lochard J, Bouffler S, Cho K, Kai M, Laurier D, Liu S, Romanov S. 2021. Keeping the ICRP recommendations fit for purpose. J. Radiol. Prot. 41: 1390–1409. [CrossRef] [Google Scholar]
  • Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson CM, Cousins C, Lochard J, Bouffler S, Cho K, Kai M, Laurier D, Liu S, Romanov S. 2022. Maintenir les recommandations de la CIPR adaptées aux besoins. Radioprotection 57(2): 93–106. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cosset JM, Socié G, Girinsky T, Dubray B, Fourquet A, Gluckman E. 1995. Radiobiological and clinical bases for total body irradiation in the leukemias and lymphomas. Semin. Radiat. Oncol. 5(4): 301–315. [CrossRef] [Google Scholar]
  • Cosset JM, et al. 2016. Prevention of radio-induced cancers. Cancer Radiother. 20: S61–S68. [CrossRef] [Google Scholar]
  • Cosset JM, Hetnal M, Chargari C. 2018. Second cancers after radiotherapy: update and recommandations. Radioprotection 53(2): 101–105. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cosset JM, Deutsch E. 2021. Low-dose irradiation of non-malignant diseases: Did we throw the baby out with the bathwater? Cancer Radiother. 25(3): 279–282. [CrossRef] [Google Scholar]
  • Cullings HM, Pierce DA, Kellerer AM. 2014. Accounting for neutron exposure in the Japanese atomic bomb survivors. Radiat. Res. 182(6): 587–598. [CrossRef] [PubMed] [Google Scholar]
  • Cuttler JM. 2014. Leukemia incidence of 96 000 Hiroshima atomic bomb survivors is compelling evidence that the LNT model is wrong. Arch. Toxicol. 88(3): 847–848. [CrossRef] [PubMed] [Google Scholar]
  • David E, Wolfsom M, Fraifeld VE. 2021. Background radiation impacts human longevity and cancer mortality: reconsidering the linear-no-threshold paradigm. Biogerontology 22: 189–195. [PubMed] [Google Scholar]
  • De Bruin ML, et al. 2009. Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J. Clin. Oncol. 27(26): 4239–4246. [CrossRef] [PubMed] [Google Scholar]
  • De Gonzales AB, et al. 2010. Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. Br. J. Cancer 102(1): 220–226. [CrossRef] [PubMed] [Google Scholar]
  • De Gonzales AB, et al. 2011. Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncol. 12(4): 353–360. [CrossRef] [Google Scholar]
  • Doss M. 2018. Are we approaching the end of the linear no-threshold era? J. Nucl. Med. 59(12): 1786–1793. [CrossRef] [PubMed] [Google Scholar]
  • Favaudon V, et al. 2014. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 16;6(245): 245ra93. [Google Scholar]
  • Foray N, Bourguignon M, Hamada N. 2016. Individual response to ionizing radiation. Mutat. Res. Rev. 770: 369–386. [CrossRef] [Google Scholar]
  • Hall EJ. 2006. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65(1): 1–7. [CrossRef] [Google Scholar]
  • Hendry JH. 2012. Radiation biology and radiation protection. Ann. ICRP 41(3–4): 64–71. [CrossRef] [PubMed] [Google Scholar]
  • Huang J, Mackillop WJ. 2001. Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer 92(1): 172–180. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hsu WL, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, Kimura A, Kamada N, Dohy H, Tomonaga M, Iwanaga M, Miyazaki Y, Cullings HM, Suyama A, Ozasa K, Shore RE, Mabuchi K. 2013. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res. 179(3): 361–382. [CrossRef] [PubMed] [Google Scholar]
  • ICRP Publication 60. 1990. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21(1–3). [Google Scholar]
  • ICRP Publication 79. 1998. Genetic susceptibility to cancer. Ann. ICRP 28(1–2). [Google Scholar]
  • ICRP Publication 103. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 37(2–4). [Google Scholar]
  • Joiner MC, et al. 1996. Hypersensitivity to very-low single radiation doses: its relationship to the adaptive response and induced radioresistance. Mutat. Res. 358(2): 171–183. [CrossRef] [Google Scholar]
  • Joiner MC, Marples B, Lambin P, Short SC, Turesson I. 2001. Low-dose hypersensitivity: current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 49(2): 379–389. [CrossRef] [Google Scholar]
  • Kirova YM, Vilcoq JR, Asselain B, Sastre-Garau X, Fourquet A. 2005. Radiation-induced sarcomas after radiotherapy for breast carcinoma: a large-scale single-institution review. Cancer 104(4): 856–863. [CrossRef] [PubMed] [Google Scholar]
  • Kry SF, et al. 2005. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 62(4): 1195–1203 [CrossRef] [Google Scholar]
  • Leuraud K, Fournier L, Samson E, Caër-Lorho S, Laurier D. 2017. Mortality in the French cohort of nuclear workers. Radioprotection 52(3): 199–210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Little MP. 2001. Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int. J. Radiat. Biol. 77(4): 431–464. [CrossRef] [PubMed] [Google Scholar]
  • Luckey TD. 1982. Physiological benefits from low levels of ionizing radiation. Health Phys. 43(6): 771–789. [CrossRef] [PubMed] [Google Scholar]
  • Marcus CS. 2015. Time to reject the linear-no threshold hypothesis and accept thresholds and hormesis: a petition to the U.S. Nuclear Regulatory Commission. Clin. Nucl. Med. 40(7): 617–619. [CrossRef] [PubMed] [Google Scholar]
  • Mettler FA, et al. 1996. Benefits versus risks from mammography: a critical reassessment. Cancer 77(5): 903–909. [CrossRef] [PubMed] [Google Scholar]
  • Pennington CW, Siegel JA. 2019. The linear no-threshold model of low-dose radiogenic cancer: a failed fiction. Dose Response 17(1). [Google Scholar]
  • Petti PL, Chuang CF, Smith V, Larson DA. 2006. Peripheral doses in CyberKnife radiosurgery. Med. Phys. 33(6): 1770–1779. [CrossRef] [Google Scholar]
  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. 2007. Solid cancer incidence in atomic bomb survivors: 1958- 1998. Radiat. Res. 168(1): 1–64. [CrossRef] [PubMed] [Google Scholar]
  • Razghandi S, Karimi-Shahri K, Firoozabadi MM. 2021. Evaluation of neutron spectra and dose equivalent from a Varian 2100C/D Medical Linear Accelerator: Monte Carlo simulation and a literature review. Radioprotection 56(2): 93–101. [CrossRef] [EDP Sciences] [Google Scholar]
  • Recorad. 2022. Cancer/Radiothérapie 26(1–2): 1–426. [CrossRef] [Google Scholar]
  • Rubino C, Shamsaldin A, Lê MG, Labbé M, Guinebretière JM, Chavaudra J, de Vathaire F. 2005. Radiation dose and risk of soft tissue and bone sarcoma after breast cancer treatment. Breast Cancer Res. Treat. 89(3): 277–288. [CrossRef] [PubMed] [Google Scholar]
  • Sachs RK, Brenner DJ. 2005. Solid tumor risks after high doses of ionizing radiation. Proc. Natl. Acad. Sci. USA 102(37): 13040–13045. [CrossRef] [PubMed] [Google Scholar]
  • Schaapveld M, et al. 2015. Second cancer risk up to 40 years after treatment for Hodgkin’s Lymphoma. N. Engl. J. Med. 373(26): 2499–2511. [CrossRef] [PubMed] [Google Scholar]
  • Schneider U, Kaser-Hotz B. 2005. Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat. Environ. Biophys. 44(3): 235–239. [CrossRef] [PubMed] [Google Scholar]
  • Schneider U, Walsh L. 2008. Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat. Environ. Biophys. 47(2): 253–263. [CrossRef] [PubMed] [Google Scholar]
  • Schneider U. 2011. Modeling the risk of secondary malignancies after radiotherapy. Genes 2(4): 1033–1049. [CrossRef] [PubMed] [Google Scholar]
  • Scott BR. 2008. Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model. Hum. Exp. Toxicol. 27(2): 163–168. [CrossRef] [PubMed] [Google Scholar]
  • Scott BRV. 2018. A critique of recent epidemiologic studies of cancer mortality among nuclear workers. Dose Response 16(2): 1559325818778702. [PubMed] [Google Scholar]
  • Seegenschmiedt MH, Micke O, Muecke R, German Cooperative Group on Radiotherapy for Non-malignant Diseases (GCG-BD). 2015. Radiotherapy for non-malignant disorders: state of the art and update of the evidence-based practice guidelines. Br. J. Radiol. 88(1051): 20150080. [CrossRef] [PubMed] [Google Scholar]
  • Shore RE, et al. 2019. Recent epidemiologic studies and the linear no-threshold model for radiation protection-considerations regarding NCRP Commentary 27. Health Phys. 116(2): 235–246. [CrossRef] [PubMed] [Google Scholar]
  • Suit H, et al. 2007. Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat. Res. 167(1): 12–42. [CrossRef] [PubMed] [Google Scholar]
  • Sutou S. 2015. Tremendous human, social, and economic losses caused by obstinate application of the failed linear no-threshold model. Yakugaku Zasshi. 135(11): 1197–1211. [CrossRef] [PubMed] [Google Scholar]
  • Sutou SJ. 2017. Rediscovery of an old article reporting that the area around the epicenter in Hiroshima was heavily contaminated with residual radiation, indicating that exposure doses of A-bomb survivors were largely underestimated. Radiat. Res. 58(5): 745–754. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M, Aurengo A, Averbeck D, Masse R. 2006. The debate on the use of linear no threshold for assessing the effects of low doses. J. Radiol. Prot. 26(3): 317–324. [CrossRef] [PubMed] [Google Scholar]
  • Tubiana M. 2009. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother. Oncol. 91(1): 4–15. [CrossRef] [Google Scholar]
  • Vozenin MC, Baumann M, Coppes RP, Bourhis J. 2019. FLASH radiotherapy International Workshop. Radiother. Oncol. 139: 1–3. [CrossRef] [Google Scholar]
  • Waltar A, Feinendegen L. 2020. The double threshold: consequences for identifying low-dose radiation effects. Dose Response 18(3). [Google Scholar]
  • Xu XG, Bednarz B, Paganetti H. 2008. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 53: R193– R241. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.