Free Access
Issue
Radioprotection
Volume 56, Number 1, January-March 2021
Page(s) 11 - 24
DOI https://doi.org/10.1051/radiopro/2020072
Published online 17 November 2020
  • Abuodeh Y, Venkat P, Kim S. 2016. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer 40(1): 25–37. Epub 2015/11/20. [CrossRef] [PubMed] [Google Scholar]
  • Almeida C, et al. 2013. The role of alveolar epithelium in radiation-induced lung injury. PLoS One 8(1): e53628. Epub 2013/01/18. [Google Scholar]
  • Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM. 2009. Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J. Hematol. Oncol. 2: 6. Epub 2009/02/04. [CrossRef] [PubMed] [Google Scholar]
  • Baumann P, et al. 2009. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J. Clin. Oncol. 27(20): 3290–3296. Epub 2009/05/06. [CrossRef] [PubMed] [Google Scholar]
  • Beach TA, Groves AM, Williams JP, Finkelstein JN. 2018. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int. J. Radiat. Biol.: 1–16. Epub 2018/10/26. [Google Scholar]
  • Beach TA, Groves AM, Williams JP, Finkelstein JN. 2020. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int. J. Radiat. Biol. 96(1): 129–144. Epub 2018/10/26. [Google Scholar]
  • Beach TA, Johnston CJ, Groves AM, Williams JP, Finkelstein JN. 2017. Radiation induced pulmonary fibrosis as a model of progressive fibrosis: contributions of DNA damage, inflammatory response and cellular senescence genes. Exp. Lung Res. 43(3): 134–149. Epub 2017/05/24. [Google Scholar]
  • Bertho A, et al. 2020. Preclinical model of stereotactic ablative lung irradiation using arc delivery in the mouse: effect of beam size changes and dose effect at constant collimation. Int. J. Radiat. Oncol. Biol. Phys. Epub 2020/04/13. [Google Scholar]
  • Blais E, et al. 2017. Lung dose constraints for normo-fractionated radiotherapy and for stereotactic body radiation therapy. Cancer Radiother. 21(6–7): 584–596. Epub 2017/09/10. [CrossRef] [PubMed] [Google Scholar]
  • Bledsoe TJ, Nath SK, Decker RH. 2017. Radiation pneumonitis. Clin. Chest Med. 38(2): 201–208. Epub 2017/05/10. [CrossRef] [PubMed] [Google Scholar]
  • Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C. 2019. The 6th R of radiobiology: reactivation of anti-tumor immune response. Cancers 11(6). Epub 2019/06/23. [Google Scholar]
  • Brown JM, Carlson DJ, Brenner DJ. 2014. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int. J. Radiat. Oncol. Biol. Phys. 88: 254–262. [CrossRef] [PubMed] [Google Scholar]
  • Brown JM, Diehn M, Loo BW, Jr. 2010. Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int. J. Radiat. Oncol. Biol. Phys. 78(2): 323–327. Epub 2010/09/14. [CrossRef] [PubMed] [Google Scholar]
  • Carmeliet P, Jain RK. 2011. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10(6): 417–427. Epub 2011/06/02. [Google Scholar]
  • Chang JY, Bezjak A, Mornex F. 2015. Stereotactic ablative radiotherapy for centrally located early stage non-small-cell lung cancer: what we have learned. J. Thorac. Oncol. 10(4): 577–585. Epub 2014/12/17. [Google Scholar]
  • Chen DS, Mellman I. 2017. Elements of cancer immunity and the cancer-immune set point. Nature 541(7637): 321–330. Epub 2017/01/20. [CrossRef] [PubMed] [Google Scholar]
  • Chiang CS, et al. 2005. Compartmental responses after thoracic irradiation of mice: strain differences. Int. J. Radiat. Oncol. Biol. Phys. 62(3): 862–871. Epub 2005/06/07. [CrossRef] [PubMed] [Google Scholar]
  • Cho J, Kodym R, Seliounine S, Richardson JA, Solberg TD, Story MD. 2010. High dose-per-fraction irradiation of limited lung volumes using an image-guided, highly focused irradiator: simulating stereotactic body radiotherapy regimens in a small-animal model. Int. J. Radiat. Oncol. Biol. Phys. 77(3): 895–902. Epub 2010/06/01. [CrossRef] [PubMed] [Google Scholar]
  • Chung EJ, et al. 2016. Truncated plasminogen activator inhibitor-1 protein protects from pulmonary fibrosis mediated by irradiation in a murine model. Int. J. Radiat. Oncol. Biol. Phys. 94(5): 1163–1172. Epub 2016/02/18. [CrossRef] [PubMed] [Google Scholar]
  • Citrin DE, et al. 2013. Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J. Natl. Cancer Inst. 105(19): 1474–1484. Epub 2013/09/21. [CrossRef] [PubMed] [Google Scholar]
  • Citrin DE, et al. 2017. Radiation-induced fibrosis: mechanisms and opportunities to mitigate. Report of an NCI Workshop, September 19, 2016. Radiat. Res. 188(1): 1–20. Epub 2017/05/11. [Google Scholar]
  • De Rose F, et al. 2017. Organs at risk in lung SBRT. Phys. Med. 44: 131–138. Epub 2017/04/24. [CrossRef] [PubMed] [Google Scholar]
  • Demaria S, et al. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11(2 Pt 1): 728–734. Epub 2005/02/11. [PubMed] [Google Scholar]
  • Demaria S, et al. 2004. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58(3): 862–870. Epub 2004/02/18. [CrossRef] [PubMed] [Google Scholar]
  • Dewan MZ, et al. 2009. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15(17): 5379–5388. Epub 2009/08/27. [CrossRef] [PubMed] [Google Scholar]
  • Finkelstein SE, et al. 2011. The confluence of stereotactic ablative radiotherapy and tumor immunology. Clin. Dev. Immunol. 2011: 439752. Epub 2011/12/14. [CrossRef] [PubMed] [Google Scholar]
  • Fleckenstein K, et al. 2007. Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int. J. Radiat. Oncol. Biol. Phys. 68(1): 196–204. Epub 2007/04/24. [CrossRef] [PubMed] [Google Scholar]
  • Fowler J, Yang J, Lamond J, Lanciano R, Feng J, Brady L. 2010. A “Red Shell” concept of increased radiation damage hazard to normal tissues just outside the PTV target volume. Radiother. Oncol. 94(3): 384. Epub 2010/02/23. [Google Scholar]
  • Garcia-Barros M, et al. 2003. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622): 1155–1159. Epub 2003/05/17. [Google Scholar]
  • Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC. 2013. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1(6): 365–372. Epub 2014/02/25. [CrossRef] [PubMed] [Google Scholar]
  • Gross NJ, Balis JV. 1978. Functional, biochemical, and morphologic changes in alveolar macrophages following thoracic x-irradiation. Lab. Invest. 39(4): 381–389. Epub 1978/10/01. [PubMed] [Google Scholar]
  • Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. 2016. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol. 92(12): 754–765. Epub 2016/08/20. [Google Scholar]
  • Haimovitz-Friedman A, et al. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180(2): 525–535. Epub 1994/08/01. [CrossRef] [PubMed] [Google Scholar]
  • Hiniker SM, Chen DS, Knox SJ. 2012. Abscopal effect in a patient with melanoma. N. Engl. J. Med. 366(21): 2035; author reply − 6. Epub 2012/05/25. [Google Scholar]
  • Hong ZY, et al. 2014a. Development of a small animal model to simulate clinical stereotactic body radiotherapy-induced central and peripheral lung injuries. J. Radiat. Res. 55(4): 648–657. Epub 2014/02/22. [CrossRef] [PubMed] [Google Scholar]
  • Hong ZY, et al. 2014b. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy. Radiat. Res. 182(1): 83–91. Epub 2014/06/18. [Google Scholar]
  • Hong ZY, et al. 2016. Time, dose, and volume responses in a mouse pulmonary injury model following ablative irradiation. Lung 194(1): 81–90. Epub 2015/11/14. [Google Scholar]
  • Jackson IL, Vujaskovic Z, Down JD. 2011. A further comparison of pathologies after thoracic irradiation among different mouse strains: finding the best preclinical model for evaluating therapies directed against radiation-induced lung damage. Radiat. Res. 175(4): 510–518. Epub 2011/02/23. [Google Scholar]
  • Jarosz-Biej M, Smolarczyk R, Cichon T, Kulach N. 2019. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int. J. Mol. Sci. 20(13). Epub 2019/07/03. [Google Scholar]
  • Jin H, Jeon S, Kang GY, Lee HJ, Cho J, Lee YS. 2017. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes. Int. J. Radiat. Biol. 93(2): 184–193. Epub 2016/09/21. [Google Scholar]
  • Johnston CJ, Hernady E, Reed C, Thurston SW, Finkelstein JN, Williams JP. 2010. Early alterations in cytokine expression in adult compared to developing lung in mice after radiation exposure. Radiat. Res. 173(4): 522–535. Epub 2010/03/26. [Google Scholar]
  • Johnston CJ, Wright TW, Rubin P, Finkelstein JN. 1998. Alterations in the expression of chemokine mRNA levels in fibrosis-resistant and −sensitive mice after thoracic irradiation. Exp. Lung Res. 24(3): 321–337. Epub 1998/06/23. [Google Scholar]
  • Kang SK, et al. 2003. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int. J. Radiat. Oncol. Biol. Phys. 57(4): 1056–1066. Epub 2003/10/25. [CrossRef] [PubMed] [Google Scholar]
  • Kang KH, et al. 2015. Complications from stereotactic body radiotherapy for lung cancer. Cancers 7(2): 981–1004. Epub 2015/06/18. [CrossRef] [PubMed] [Google Scholar]
  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. 2010. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120(3): 694–705. Epub 2010/02/25. [CrossRef] [PubMed] [Google Scholar]
  • Kwon OS, et al. 2016. Induction of MiR-21 by stereotactic body radiotherapy contributes to the pulmonary fibrotic response. PLoS One 11(5): e0154942. Epub 2016/05/14. [Google Scholar]
  • Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S. 2008. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 70(3): 685–692. Epub 2008/01/01. [CrossRef] [PubMed] [Google Scholar]
  • Lasnitzki I. 1947. A quantitative analysis of the direct and indirect action of X radiation on malignant cells. Br. J. Radiol. 20(234): 240–247. Epub 1947/06/01. [CrossRef] [PubMed] [Google Scholar]
  • Lavigne J, et al. 2019. Lung stereotactic arc therapy in mice: development of radiation pneumopathy and influence of HIF-1alpha endothelial deletion. Int. J. Radiat. Oncol. Biol. Phys. 104(2): 279–290. Epub 2019/02/01. [CrossRef] [PubMed] [Google Scholar]
  • Lee PP, et al. 1999. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5(6): 677–685. Epub 1999/06/17. [CrossRef] [PubMed] [Google Scholar]
  • Lee Y, et al. 2009. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3): 589–595. Epub 2009/04/08. [Google Scholar]
  • Lindblom EK, Dasu A, Toma-Dasu I. 2019. Hypoxia induced by vascular damage at high doses could compromise the outcome of radiotherapy. Anticancer Res. 39(5): 2337–2340. Epub 2019/05/17. [CrossRef] [PubMed] [Google Scholar]
  • Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. 2005. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174(12): 7516–7523. Epub 2005/06/10. [CrossRef] [PubMed] [Google Scholar]
  • Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. 2008. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J. Immunol. 180(5): 3132–3139. Epub 2008/02/23. [CrossRef] [PubMed] [Google Scholar]
  • Lumniczky K, Safrany G. 2015. The impact of radiation therapy on the antitumor immunity: local effects and systemic consequences. Cancer Lett. 356(1): 114–125. Epub 2013/09/03. [Google Scholar]
  • Macia IGM. 2017. Radiobiology of stereotactic body radiation therapy (SBRT). Rep. Pract. Oncol. Radiother. 22(2): 86–95. Epub 2017/05/12. [Google Scholar]
  • Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. 2014. Targeting the renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int. J. Radiat. Oncol. Biol. Phys. 89(4): 722–728. Epub 2014/05/29. [CrossRef] [PubMed] [Google Scholar]
  • Manning CM, et al. 2013. Exacerbation of lung radiation injury by viral infection: the role of Clara cells and Clara cell secretory protein. Radiat. Res. 179(6): 617–629. Epub 2013/04/30. [Google Scholar]
  • Mantyla MJ, Toivanen JT, Pitkanen MA, Rekonen AH. 1982. Radiation-induced changes in regional blood flow in human tumors. Int. J. Radiat. Oncol. Biol. Phys. 8(10): 1711–1717. Epub 1982/10/01. [CrossRef] [PubMed] [Google Scholar]
  • Marciscano AE, et al. 2019 Immunomodulatory effects of stereotactic body radiation therapy: preclinical insights and clinical opportunities. Int. J. Radiat. Oncol. Biol. Phys. Epub 2019/03/06. [PubMed] [Google Scholar]
  • Milliat F, Francois A, Tamarat R, Benderitter M. 2008. Role of endothelium in radiation-induced normal tissue damages. Ann. Cardiol. Angeiol. (Paris) 57(3): 139–148. Epub 2008/06/27. [CrossRef] [PubMed] [Google Scholar]
  • Mondini M, Levy A, Meziani L, Milliat F, Deutsch E. 2020. Radiotherapy-immunotherapy combinations − perspectives and challenges. Mol. Oncol. Epub 2020/03/01. [Google Scholar]
  • Ng QS, Goh V, Milner J, Padhani AR, Saunders MI, Hoskin PJ. 2007. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: in vivo whole tumor assessment using volumetric perfusion computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 67(2): 417–424. Epub 2007/01/24. [CrossRef] [PubMed] [Google Scholar]
  • Oh ET, et al. 2014. Radiation-induced angiogenic signaling pathway in endothelial cells obtained from normal and cancer tissue of human breast. Oncogene 33(10): 1229–1238. Epub 2013/03/19. [Google Scholar]
  • Ono K, et al., Eds. 2003. Selective irradiation of the blood vessels by using boron neutron capture reaction-development and its utilization. In: 12th Quadrienal Congress of the International Association for radiation Research, Australia. [Google Scholar]
  • Pan J, et al. 2017. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int. J. Radiat. Oncol. Biol. Phys. 99(2): 353–361. Epub 2017/05/10. [CrossRef] [PubMed] [Google Scholar]
  • Paris F, et al. 2001. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528): 293–297. Epub 2001/07/14. [Google Scholar]
  • Postow MA, et al. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366(10): 925–931. Epub 2012/03/09. [Google Scholar]
  • Rube CE, et al. 2004. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther. Onkol. 180(7): 442–448. Epub 2004/07/09. [CrossRef] [PubMed] [Google Scholar]
  • Rube CE, et al. 2005. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation. Int. J. Radiat. Oncol. Biol. Phys. 61(5): 1482–1492. Epub 2005/04/09. [CrossRef] [PubMed] [Google Scholar]
  • Sharplin J, Franko AJ. 1989. A quantitative histological study of strain-dependent differences in the effects of irradiation on mouse lung during the early phase. Radiat. Res. 119(1): 1–14. Epub 1989/07/01. [Google Scholar]
  • Solesvik OV, Rofstad EK, Brustad T. 1984. Vascular changes in a human malignant melanoma xenograft following single-dose irradiation. Radiat. Res. 98(1): 115–128. Epub 1984/04/01. [Google Scholar]
  • Song CW, Kim MS, Cho LC, Dusenbery K, Sperduto PW. 2014. Radiobiological basis of SBRT and SRS. Int. J. Clin. Oncol. 19(4): 570–578. Epub 2014/07/06. [CrossRef] [PubMed] [Google Scholar]
  • Song CW, et al. 2015. Indirect tumor cell death after high-dose hypofractionated irradiation: implications for stereotactic body radiation therapy and stereotactic radiation surgery. Int. J. Radiat. Oncol. Biol. Phys. 93(1): 166–172. Epub 2015/08/19. [CrossRef] [PubMed] [Google Scholar]
  • Song CW, et al. 2019. Biological principles of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS): indirect cell death. Int. J. Radiat. Oncol. Biol. Phys. Epub 2019/03/06. [PubMed] [Google Scholar]
  • Soysouvanh F, et al. 2020. Stereotactic lung irradiation in mice promotes long-term senescence and lung injury. Int. J. Radiat. Oncol. Biol. Phys. 106(5): 1017–1027. Epub 2020/01/29. [CrossRef] [PubMed] [Google Scholar]
  • Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I. 2013. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85(2): 293–295. Epub 2012/05/09. [CrossRef] [PubMed] [Google Scholar]
  • Steel GG, McMillan TJ, Peacock JH. 1989. The 5Rs of radiobiology. Int. J. Radiat. Biol. 56(6): 1045–1048. Epub 1989/12/01. [Google Scholar]
  • Supiot S, Paris F. 2012. Radiobiology dedicated to endothelium. Cancer Radiother. 16(1): 11–15. Epub 2012/02/14. [CrossRef] [PubMed] [Google Scholar]
  • Timmerman R, et al. 2006. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J. Clin. Oncol. 24(30): 4833–4839. Epub 2006/10/20. [CrossRef] [PubMed] [Google Scholar]
  • Travis EL. 1980. The sequence of histological changes in mouse lungs after single doses of x-rays. Int. J. Radiat. Oncol. Biol. Phys. 6(3): 345–347. Epub 1980/03/01. [CrossRef] [PubMed] [Google Scholar]
  • Tugues S, Ducimetiere L, Friebel E, Becher B. 2019. Innate lymphoid cells as regulators of the tumor microenvironment. Semin. Immunol. 41: 101270. Epub 2019/03/16. [Google Scholar]
  • Twyman-Saint VC, et al. 2015. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547): 373–377. Epub 2015/03/11. [CrossRef] [PubMed] [Google Scholar]
  • Vallard A, et al. 2017. Medical prevention and treatment of radiation-induced pulmonary complications. Cancer Radiother. 21(5): 411–423. Epub 2017/06/10. [CrossRef] [PubMed] [Google Scholar]
  • Vanpouille-Box C, et al. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8: 15618. Epub 2017/06/10. [Google Scholar]
  • Weiskirchen R, Weiskirchen S, Tacke F. 2019. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Aspects Med. 65: 2–15. Epub 2018/07/01. [CrossRef] [PubMed] [Google Scholar]
  • Wong HH, Song CW, Levitt SH. 1973. Early changes in the functional vasculature of Walker carcinoma 256 following irradiation. Radiology 108(2): 429–434. Epub 1973/08/01. [CrossRef] [PubMed] [Google Scholar]
  • Wu AJ. 2019. Safety of stereotactic ablative body radiation for ultracentral stage I non-small cell lung cancer. Transl. Lung Cancer Res. 8(Suppl. 2): S135–S8. Epub 2019/11/02. [PubMed] [Google Scholar]
  • Yang J, Fowler JF, Lamond JP, Lanciano R, Feng J, Brady LW. 2010. Red shell: defining a high-risk zone of normal tissue damage in stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 77(3): 903–909. Epub 2010/04/20. [CrossRef] [PubMed] [Google Scholar]
  • Zhao J, et al. 2016. Simple factors associated with radiation-induced lung toxicity after stereotactic body radiation therapy of the thorax: a pooled analysis of 88 studies. Int. J. Radiat. Oncol. Biol. Phys. 95(5): 1357–1366. Epub 2016/06/22. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.