Free Access
Issue
Radioprotection
Volume 54, Number 2, April–June 2019
Page(s) 117 - 123
DOI https://doi.org/10.1051/radiopro/2019011
Published online 30 April 2019
  • Amini I, Akhlaghi P, Sarbakhsh P. 2018. Construction and verification of a physical chest phantom from suitable tissue equivalent materials for computed tomography examinations. Radiat. Phys. Chem. 150: 51–57. [CrossRef] [Google Scholar]
  • Constantinou C, Harrington JC, DeWerd LA. 1992. An electron density calibration phantom for CT‐based treatment planning computers. Med. Phys. 19: 325–327. [CrossRef] [PubMed] [Google Scholar]
  • Cozzi L, Fogliata A, Buffa F, Bieri S. 1998. Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy. Radiother. Oncol. 48: 335–338. [CrossRef] [PubMed] [Google Scholar]
  • Inness EK, Moutrie V, Charles PH. 2014. The dependence of computed tomography number to relative electron density conversion on phantom geometry and its impact on planned dose. Australas. Phys. Eng. Sci. Med. 37: 385–391. [CrossRef] [PubMed] [Google Scholar]
  • International Commission on Radiation Units and Measurement. 1989. Tissue substitutes in radiation dosimetry and measurement. ICRU Rep. 44 41: 1–220. [Google Scholar]
  • Jackson DF, Hawkes DJ. 1981. X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70: 169–233. [Google Scholar]
  • Rutherford R, Pullan B, Isherwood I. 1976. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 11: 15–21. [Google Scholar]
  • Schneider U, Pedroni E, Lomax A. 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys. Med. Biol. 41: 111–124. [CrossRef] [PubMed] [Google Scholar]
  • Schneider W, Bortfeld T, Schlegel W. 2000. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45: 459–478. [CrossRef] [PubMed] [Google Scholar]
  • Shih CT, Wu J. 2017. Converting computed tomography images into photon interaction coefficients by using stoichiometric calibration and parametric fit models. Med. Phys. 44: 510–521. [CrossRef] [PubMed] [Google Scholar]
  • Skrzyński W, Zielińska-Dąbrowska S, Wachowicz M, Ślusarczyk-Kacprzyk W, Kukołowicz PF, Bulski W. 2010. Computed tomography as a source of electron density information for radiation treatment planning. Strahlenther. Onkol. 186: 327–333. [CrossRef] [PubMed] [Google Scholar]
  • Tsukihara M, Noto Y, Sasamoto R, Hayakawa T, Saito M. 2015. Initial implementation of the conversion from the energy‐subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning. Med. Phys. 42: 1378–1388. [CrossRef] [PubMed] [Google Scholar]
  • Vanderstraeten B et al. 2007. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: A multi-centre study. Phys. Med. Biol. 52: 539–562. [CrossRef] [PubMed] [Google Scholar]
  • Yang M, Virshup G, Mohan R, Shaw CC, Zhu XR, Dong L. 2008. Improving accuracy of electron density measurement in the presence of metallic implants using orthovoltage computed tomography. Med. Phys. 35: 1932–1941. [CrossRef] [PubMed] [Google Scholar]
  • Yohannes I, Kolditz D, Kalender WA. 2011. Semiempirical analysis of materials’ elemental composition to formulate tissue-equivalent materials: A preliminary study. Phys. Med. Biol. 56: 2963–2977. [CrossRef] [PubMed] [Google Scholar]
  • Yohannes I, Kolditz D, Langner O, Kalender WA. 2012. A formulation of tissue-and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning. Phys. Med. Biol. 57: 1173–1190. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.