Free Access
Issue
Radioprotection
Volume 53, Number 3, July-September 2018
Page(s) 207 - 217
DOI https://doi.org/10.1051/radiopro/2018024
Published online 21 June 2018
  • Bayanov B, Burdakov V, Ivanov A. 2015. Readiness for boron neutron capture therap. In: Biomedical Engineering and Computational Technologies (SIBIRCON), 2015, International Conference on. IEEE, pp. 27–32. [Google Scholar]
  • Bortolussi S, Bakeine JG, Ballarini F. 2011. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours. Appl. Radiat. Isot. 69(2): 394–398. [CrossRef] [PubMed] [Google Scholar]
  • Ettinger DS, Akerley W, Borghaei H. 2013. Non-small cell lung cancer, version 2. J. Natl. Compr. Canc. Netw. 11(6): 645–653. [CrossRef] [Google Scholar]
  • Farias RO, Bortolussi S, Menendez PR, Gonzalez SJ. 2014. Exploring Boron Neutron Capture Therapy for non-small cell lung cancer. Phys. Medica 30: 888–897. [CrossRef] [Google Scholar]
  • Fujimoto N et al., 2015. Improvement of depth dose distribution using multiple- field irradiation in boron neutron capture therapy. Appl. Radiat. Isot. 106: 134–138. [Google Scholar]
  • Geng CR, Tang XB, Hou XX, Shu DY, Chen D. 2014. Development of Chinese hybrid radiation adult phantoms and their application to external dosimetry. Sci. China Technol. Sc. 57(4): 713–719. [CrossRef] [Google Scholar]
  • Goorley JT, Kiger Lii, WS, Zamenhof RG. 2002. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med. Phys. 29(2): 145–156. [Google Scholar]
  • Guitton TG, Kinaci A, Ring D. 2013. Diagnostic accuracy of 2- and 3-dimensional computed tomography and solid modeling of coronoid fractures. J. Shoulder Elbow Surg. 22: 782–786. [CrossRef] [PubMed] [Google Scholar]
  • Haiyan Y et al. 2017a. Impacts of multiple-field irradiation and boron concentration on the treatment of boron neutron capture therapy for non-small cell lung cancer. Iran. J. Radiat. Res. 15(1): 1. [Google Scholar]
  • Haiyan Y et al. 2017b. Influence of neutron sources and 10B concentration on boron neutron capture therapy for shallow and deeper non-small cell lung cancer. Health Phys. 112(3): 258–265. [Google Scholar]
  • Heber E, Trivillin VA, Nigg D, Erica L, Kreimanna Maria E, Itoiza c, Raúl J. 2004. Biodistribution of GB-10 (Na2B10H10) compound for boron neutron capture therapy (BNCT) in an experimental model of oral cancer in the hamster cheek pouch. Arch. Oral Biol. 49(4): 313–324. [Google Scholar]
  • International Atomic Energy Agency. 2001. Current status of neutron capture therapy. IAEA- TECDOC-1223. [Google Scholar]
  • International Commission on Radiation Units and Measurements. 1992. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. Report 46. [Google Scholar]
  • International Commission on Radiological Protection. 2002. Basic anatomical and physiological data for use in radiological protection reference values. ICRP Publication 89. Ann ICRP 32. [Google Scholar]
  • Ishiyama S. 2014. Deterministic Parsing Model of the Compound Biological Effectiveness (CBE) Factor for Intracellular 10Boron Distribution in Boron Neutron Capture Therapy. J. Cancer Ther. 5(14): 1388. [Google Scholar]
  • Kiger JL. 2006. Radiobiology of normal rat lung in boron neutron capture therapy. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology. [Google Scholar]
  • Krstic D, Markovic VM, Jovanovic Z, Milenkovic B, Nikezic D, Atanackovic J. 2014. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy. Radiat. Prot. Dosim. 161: 269–273. [CrossRef] [Google Scholar]
  • Lee PY et al. 2014. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Radiat. Prot. Dosim. 161: 403–409. [Google Scholar]
  • Liu YWH, Chang CT, Yeh LY, Wang LW, Lin TY. 2013. BNCT treatment planning for superficial and deep-seated tumors: Experience from clinical trial of recurrent head and neck cancer at THOR. Appl. Radiat. Isot. 106: 121–124. [CrossRef] [Google Scholar]
  • National Council on Radiation Protection and Measurements. 1992. Limitation of exposure to ionizing radiation NCRP Report No. 116. [Google Scholar]
  • Norbash AM, Busick D, Marks MP. 1996. Techniques for reducing interventional neuroradiologic skin dose: tube position rotation and supplemental beam filtration. Am. J. Neuroradiol. 17: 41–49. [Google Scholar]
  • Ryynanen PM, Kortesniemi M. 2000. Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT International. Int. J. Radiat Oncol. 48: 1145–1154. [CrossRef] [Google Scholar]
  • Sakurai Y, Ono K. 2007. Improvement of dose distribution by central beam shielding in boron neutron capture therapy. Phys. Med. Biol. 52(24): 7409. [CrossRef] [PubMed] [Google Scholar]
  • Sutlief SG. 2015. Protection and measurement in radiation therapy. Health Phys. 108(2): 224–241. [CrossRef] [PubMed] [Google Scholar]
  • Suzuki M, Suzuki O, Sakurai Y. 2012. Reirradiation for locally recurrent lung cancer in the chest wall with boron neutron capture therapy (BNCT). Int. Cancer Conf. J. Springer Japan 1(4): 235–238. [Google Scholar]
  • Takada K, Kumada H, Liem PH. 2016. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Physica Medica: Eur. J. Med. Phys. 32(12): 1846–1851. [Google Scholar]
  • Trivillin VA, Heber EM, Itoiz ME. 2004. Radiobiology of bnct mediated by GB-10 and GB-10+BPA in experimental oral cancer. Appl. Radiat. Isot. 61: 939–945. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.