Free Access
Issue
Radioprotection
Volume 52, Number 4, October-December 2017
Page(s) 291 - 296
DOI https://doi.org/10.1051/radiopro/2017030
Published online 13 October 2017
  • Billard F et al. 1966. Influence de l'humidité et de la concentration en iode sur l'adsorption de l'iode 131 par les charbons actifs, Rapport CEA-R 2908. [Google Scholar]
  • Braccini S et al. 2014. Study of the radioactivity induced in air by a 15-MeV proton beam, Radiat. Prot. Dosim. 163(3): 269–275. [CrossRef] [Google Scholar]
  • Calendrino R et al. 2007. Measurement and control of the air contamination generated in a medical cyclotron facility for PET radiopharmaceuticals, Health Phys. 92(5 Suppl): S70–S77. [CrossRef] [PubMed] [Google Scholar]
  • FANC-AFCN. 2009. Évaluation des rejets radioactifs gazeux des installations de production de radio-traceurs au moyen d'un cyclotron, Note n° 10-004-F. [Google Scholar]
  • Garnir HP. 2009. Étude de l'activité parasite produite par le cyclotron IPNAS lors d'irradiations dans l'air. Université de Liège : IPNAS. [Google Scholar]
  • Guillaume M et al. 1990. Recommendations for Fluorine-18 Production, Appl. Radiat. Isot. 42(8): 749–762. [CrossRef] [Google Scholar]
  • IAEA. 2012. Cyclotron produces radionuclides: Guidance on facility design and production of [18F] Fluorodeoxyglucode (FDG). Austria: IAEA radioisotopes and radiopharmaceuticals series n°3. [Google Scholar]
  • Jacobson O et al. 2014. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes, Bioconjug. Chem. 26(1): 1–18. [CrossRef] [PubMed] [Google Scholar]
  • Kleck JH et al. 1991. Assessment of 18F gaseous releases during the production of 18F-fluorodeoxyglucose, Health Phys. 60(5): 657–660. [CrossRef] [PubMed] [Google Scholar]
  • Klett A. 2009. Air monitoring at PET Centers − Berthold technologies. Dans: 21st Annual Air Monitoring Users Group (AMUG), 6th May 2009, Meeting Palace Station Hotel, Las Vegas, Nevada, USA. [Google Scholar]
  • Leach V. 2013. The efficiency for gas capture systems for PET cyclotrons and hot cells. Dans: 2013 ARPS Conference. [Google Scholar]
  • Le Bars D. 1998. Production du FDG, Revue de l'ACOMEN 4(1). [Google Scholar]
  • Mochizuki S et al. 2013. Analysis of induced radionuclides in replacement parts and liquid wastes in a medical cyclotron solely used for production of 18F for [18F] FDG, Appl. Radiat. Isot. 74: 137–143. [CrossRef] [PubMed] [Google Scholar]
  • Schweiger L. 2011. An effective technique for storage of short lived radioactive gaseous waste, Appl. Radiat. Isot. 69(9): 1185–1188. [CrossRef] [PubMed] [Google Scholar]
  • Sharma RB et al. 1994. Efficiency of an in-line charcoal filter in automated chemistry process control unit during the synthesis of 18F-fluorodeoxyglucose (FDG), J. Radioanal. Nucl. Chem. 183(2): 329–337. [CrossRef] [Google Scholar]
  • Varmenot N. 2010. Cyclotron Arronax, radioprotection d'un cyclotron de haute énergie − haute intensité. Dans : 27e journées des LARDs. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.