Free Access
Issue |
Radioprotection
Volume 50, Number 3, Juillet-Septembre 2015
|
|
---|---|---|
Page(s) | 187 - 194 | |
DOI | https://doi.org/10.1051/radiopro/2015011 | |
Published online | 24 July 2015 |
- Briesmeister J.F. (2000) A general Monte Carlo N-particle transports code: version4c. Report LA-13709-M, 1-427, Los Alamos National Laboratory, Los Alamos. [Google Scholar]
- Brill A.B., Stabin M., Bouville A., Ron E. (2006) Normal organ radiation dosimetry and associated uncertainties in nuclear medicine, with emphasis on iodine-131, Radiat. Res. 166 (1), 128-140. [Google Scholar]
- Chen S., Yu L., Jiang C., Zhao Y., Sun D., Li S., Ju D.W. (2005) Pivotal Study of Iodine-131 – Labeled Chimeric Tumor Necrosis Treatment Radioimmunotherapy in Patients With Advanced Lung Cancer, J. Clin. Oncol. 23 (7), 1538-1547. [CrossRef] [PubMed] [Google Scholar]
- Cristy M., Eckerman K.F. (1987a) Specific absorbed fractions of energy at various ages from internal photon sources. VII. Adult Male. ORNL/TM-8381/V7. Oak Ridge National Laboratory, Tennessee. [Google Scholar]
- Cristy M., Eckerman K.F. (1987b) Appendices B, C, D. In: Specific absorbed fractions of energy at various ages from internal photon sources. I. Methods. ORNL/TM-8381/V1. Oak Ridge National Laboratory, Tennessee. [Google Scholar]
- Ebrahimi-Khankook A., Miri-Hakimabad H., Rafat-Motavalli L. (2014) Studying the effect of the lung size variation on dosimetry and systematic parameters of FUM-IVNAA facility, J. Radioanal. Nucl. Chem. 303, 2263-2270. [Google Scholar]
- Ebrahimi-Khankook A., Miri-Hakimabad H., Rafat-Motavalli L. (2015) A study of the effect of the lung shape on the lung absorbed dose in six standard photon and neutron exposure geometries, Radioprotection 50 (1), 65-72. [CrossRef] [EDP Sciences] [Google Scholar]
- Han E.Y. (2005) Revised Series of Stylized Anthropometric Phantoms for Internal and External Radiation Dose Assessment, Ph.D Thesis, The University of Florida, pp. 16-36, 239-240. [Google Scholar]
- ICRP Publication 23 (1975) International Commission on Radiological Protection. Report of the Task Group on Reference Man. [Google Scholar]
- ICRP Publication 89 (2002) International Commission on Radiological Protection. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. Pergamon, Oxford. [Google Scholar]
- Kry S.F., Salehpour M., Followill D.S., Stovall M., Kuban D.A., White R.A., Rosen I.I. (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy, Int. J. Radiat. Oncol. Biol. Phys. 62 (4), 1195-1203. [CrossRef] [PubMed] [Google Scholar]
- Miri-Hakimabad H., Rafat-Motavalli, L. (2008) Evaluation of specific absorbed fractions from internal photon sources in ORNL analytical adult Phantom, Radiat. Prot. Dosim. 128 (4), 427-431. [CrossRef] [Google Scholar]
- Mofrad F.B., Zoroofi R.A., Tehrani-Fard A.A., Akhlaghpoor S., Hori M., Chen Y.W., Sato Y. (2010) Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry, Radiat. Prot. Dosim. 141 (2), 140-148. [CrossRef] [Google Scholar]
- Na Y, Zhang J, Xu G, Hang B., Caracappa PF (2009) Next-generation deformable patient modeling for Monte Carlo assessment of organ doses Med. Phys. 36 2783 [Google Scholar]
- Na Y.H., Zhang B., Zhang J., Caracappa P.F., Xu X.G. (2010) Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms, Phys. Med. Biol. 55 (13), 3789-3812. [CrossRef] [PubMed] [Google Scholar]
- Snyder W.S. (1970) Estimates of absorbed fraction of energy from photon sources in body organs (No. CONF-691212). Oak Ridge National Laboratory, Tennessee. [Google Scholar]
- Snyder W.S., Ford M.R., Warner G.G., Watson S.B. (1975) “S” Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD pamphlet no. 11. The Society of Nuclear Medicine, New York. [Google Scholar]
- Stabin M.G. (2008) Uncertainties in internal dose calculations for radiopharmaceuticals. J. Nucl. Med. 49 (5), 853-860. [CrossRef] [PubMed] [Google Scholar]
- Stabin M.G. (2013) Internal dosimetry in nuclear medicine, Braz. J. Radiat. Sci. 01, 1-15. [Google Scholar]
- Stabin M.G., Sparks R.B., Crowe, E. (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine, J. Nucl. Med. 46 (6), 1023-1027. [PubMed] [Google Scholar]
- Sylvan E. (2005) CT-based measurement of lung volume and attenuation of deceased, http://urn.kb.se/resolve?urn\message {EMPTY: lxir-formule {content==}˙}\special {::tag lxir empty(lxir-formule){id=854} {content==}}\global \advance \xTagcount by 1\relax urn:nbn:se:liu:diva-4417. [Google Scholar]
- Williams L.E., Liu A., Yamauchi D.M., Lopatin G., Raubitschek A.A., Wong J.Y. (2002) The two types of correction of absorbed dose estimates for internal emitters. Cancer 94 (S4), 1231-1234. [CrossRef] [PubMed] [Google Scholar]
- Xu X.G., Liu T. (2011) Quantifying Uncertainty in Radiation Protection Dosimetry Using Statistical Phantoms. In: The Third International Workshop on Computational Phantoms for Radiation Protection, Imaging and Radiotherapy, August 8–9, Tsinghua University, Beijing. [Google Scholar]
- Xu X.G., Eckerman K.F. (Eds.) (2009) Handbook of anatomical models for radiation dosimetry. CRC Press. [Google Scholar]
- Yu L., Ju D.W., Chen W., Li T., Xu Z., Jiang C., Epstein, A.L. (2006) I-chTNT radioimmunotherapy of 43 patients with advanced lung cancer, Cancer Biotherapy & Radiopharmaceuticals 21 (1), 5-14. [CrossRef] [PubMed] [Google Scholar]
- Zheng S.G., Xu H.X., Lu M.D., Yue D.C., Xie X.Y., Liu G.J. (2013) Radiofrequency Ablation Before Intratumoral Injection of I-chTNT Improves the Tumor-to-Normal Tissue Ratio in Solid VX2 Tumor, Cancer Biotherapy and Radiopharmaceuticals 28 (10), 725-730. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.