Free Access
Issue
Radioprotection
Volume 48, Number 4, Octobre-Décembre 2013
Page(s) 563 - 573
Section Articles
DOI https://doi.org/10.1051/radiopro/2013075
Published online 23 September 2013
  • Aghamohammadi S.Z., Goodhead D.T., Savage J.K. (1998) Induction of sister chromatid exchanges (SCE) in Go lymphocytes by plutonium-238 alpha-particles, Int. J. Radiat. Biol. 53, 909-915. [CrossRef] [Google Scholar]
  • Al-sabti K., Lloyd D.C., Edwards A.A., Stegnar P. (1992) A survey of lymphocyte chromosomal damage in Slovenian workers exposed to occupational clastogens, Mutat. Res. 280, 215-23. [CrossRef] [PubMed] [Google Scholar]
  • Anwar W.A. (1997) Biomarkers of human exposure to pesticides, Environ. Health Perspect. 105, 801-806. [PubMed] [Google Scholar]
  • Babu N., Vasumathi N., BhimaRao R. (2009) Recovery of Ilmenite and other Heavy minerals from Teri sands (Red sands) of Tamilnadu, India, J. Miner. Mater. Charact. Eng. 8, 149-159. [Google Scholar]
  • Balakrishnan S., Rao S.B. (1999) Cytogenetic analysis of peripheral blood lymphocytes of occupational workers exposed to low levels of ionizing radiation, Mutat. Res. 442, 37-42. [CrossRef] [PubMed] [Google Scholar]
  • Ballardin M., Antonelli A., Cipollini M., Fallahi P., Scarpato R., Tomei A., Traino C., Barale R. (2007) Induction of chromatid-type aberrations in peripheral lymphocytes of hospital workers exposed to very low doses of radiation, Mutat. Res. 626, 61-68. [CrossRef] [PubMed] [Google Scholar]
  • Bauchinger M., Schmid E., Einbrodt H.J., Dresp J. (1976) Chromosome aberrations in lymphocytes after occupational exposure to lead and cadmium, Mutat. Res. 40, 57-62. [CrossRef] [PubMed] [Google Scholar]
  • Bilban M., Jakopin C.B. (2005) Incidence of cytogenetic damage in lead-Zinc mine workers exposed to radon, Mutagenesis 20, 187-191. [CrossRef] [PubMed] [Google Scholar]
  • Brenner D.J., Sachs R.K. (1994) Chromosomal ‘Fingerprints’ of prior exposure to densely ionizing radiation, Radiat. Res. 140, 134-142. [CrossRef] [PubMed] [Google Scholar]
  • Celik M., Donbak L., Unal F., Yuzbasioglu D., Aksoy H., Yilmaz S. (2007) Cytogenetic damage in workers from coal-fired power plant, Mutat. Res. 627, 158-163. [CrossRef] [PubMed] [Google Scholar]
  • Deknudt G., Léonard A., Ivanov B. (1973) Chromosome aberrations observed in male workers occupationally exposed to lead, Environ. Physiol. Biochem. 3, 132-138. [Google Scholar]
  • Dias L.F., Antunes L.M.G., Rezende P.A., Carvalho F.E., Silva C.E., Matheus M.J., Oliveira J.V., Lopes G.P., Pereira A.G., Balarin M.A. (2007) Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation, Environ. Toxicol. Pharmacol. 23, 228-233. [Google Scholar]
  • Donbak L., Rencuzogullari E., Yavuz A., Topaktas M. (2005) The genotoxic risk of underground coal miners from Turkey, Mutat. Res. 588, 82-87. [CrossRef] [PubMed] [Google Scholar]
  • Elmagd M.A., Daif M.M., Eissa H.M. (2008) Cytogenetic effects of radon inhalation, Radiat. Meas. 43, 1265-1269. [CrossRef] [Google Scholar]
  • Haridasan P.P., Pillai P.M., Khan H., Puranik D. (2006) Natural radionuclides in zircon and related radiological impacts in mineral separation plants, Radiat. Prot. Dosim. 121, 364-369. [CrossRef] [Google Scholar]
  • IAEA (2001) Cytogenetic Analysis for Radiation Dose Assessment, Technical Report Series No. 405, Vienna. [Google Scholar]
  • Johnson F.M. (1998) The genetic effects of environmental lead, Mutat. Res. 410, 123-140. [CrossRef] [PubMed] [Google Scholar]
  • Kandar M.Z., Bahari I.B. (1995) Radiation-induced chromosomal aberrations among TENORM workers: amang and Ilmenite processing workers of Malaysia, Mutat. Res. 351, 157-161. [Google Scholar]
  • Keshava N., Ong T.M. (1999) Occupational exposure to genotoxic agents, Mutat. Res. 437, 175-194. [CrossRef] [PubMed] [Google Scholar]
  • Kopjar N., Garaj-Vrhovac V. (2005) Assessment of DNA damage in nuclear medicine personnel- comparative study with the alkaline comet assay and the chromosome aberration test, Int. J. Hyg. Environ. Health 208, 179-191. [CrossRef] [PubMed] [Google Scholar]
  • Lazutka J.R., Lekevièius R., Dedonyte V., Maciulevièiûte-Gervers L., Mierauskiene J., Rudaitiene S., Slapsyte G. (1999) Chromosomal aberrations and sister-chromatid exchanges in Lithuanian populations: Effects of occupational and environmental exposures, Mutat. Res. 445, 225-239. [CrossRef] [PubMed] [Google Scholar]
  • Leonard A., Deknudt G., Leonard E.D., Decat G. (1984) Chromosome aberrations in employees from fossil-fueled and nuclear-power plants, Mutat. Res. 138, 205-212. [CrossRef] [PubMed] [Google Scholar]
  • Lloyd D.C., Lucas J.N., Edwards A.A., Deng W., Valente E., Hone P.A., Moquet J.E. (2001) A study to verify a reported excess of chromosomal aberrations in blood lymphocytes of Nambian uranium miners, Radiat. Res. 155, 809-817. [CrossRef] [PubMed] [Google Scholar]
  • Maffei F., Angelini S., Forti C.G., Violante S.N., Lodi V., Mattioli S. (2004) Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation, Mutat. Res. 547, 91-99. [CrossRef] [PubMed] [Google Scholar]
  • Maki-Paakanen J., Sorsa M., Vainio H. (1981) Chromosome aberrations and sister chromatid exchanges in lead-exposed workers, Hereditas 94, 269-275. [CrossRef] [PubMed] [Google Scholar]
  • Martin F., Earl R., Tawn E.J. (1991) A Cytogenetic study of men occupationally exposed to uranium, Br. J. Ind. Med. 48, 98-102. [PubMed] [Google Scholar]
  • Meenakshi C., Mohankumar M.N. (2012) Radon induced chromosome damage in blood lymphocytes of smokers, Res. J. Environ. Toxicology 6, 51-58. [CrossRef] [Google Scholar]
  • Nordenson I., Nordstrom S., Sweins A., Beckman L. (1982) Chromosomal aberrations in lead- exposed workers, Hereditas 96, 265-268. [CrossRef] [PubMed] [Google Scholar]
  • Padmala Reddy C.H., Ramana Devi V., Vidyullatha V., Hema Prasad M., Reddy P.P., (2000) Chromosomal aberrations in smokers exposed to metallic dust in mint factory, Rev. Biomed. 11, 87-90. [Google Scholar]
  • Prabhavathi A., Fatima K.S., Srinivasa Rao M., Reddy P.P. (2000) Analysis of chromosomal aberration frequencies in the peripheral blood lymphocytes of smokers exposed to uranyl compounds, Mutat. Res. 466, 37- 41. [CrossRef] [PubMed] [Google Scholar]
  • Pressl S., Edwards A., Stephan G. (1999) The influence of age, sex and smoking habits on the background level of fish-detected translocations, Mutat. Res. 442, 89-95. [PubMed] [Google Scholar]
  • Ramalho A.T., Nascimento A.C. (1991) The fate of chromosomal aberrations in 137 Cs- exposed individuals in the Goiania radiation accident, Health Phys. 60, 67-70. [CrossRef] [PubMed] [Google Scholar]
  • Ramsey J.M, Moore D.H. 2nd., Briner F.J., Lee D.A., Olsen L.A., Senft J.R., Tucker J.D. (1995) The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting, Mutat. Res. 338, 95-106. [CrossRef] [PubMed] [Google Scholar]
  • Rojas E., Herrera L.A., Poirier L.A., Ostrosky-Wegman P. (1999) Are metals dietary carcinogens? Mutat. Res. 443, 157-181. [CrossRef] [PubMed] [Google Scholar]
  • Santa Maria S.R., Arana M., Ramirez O. (2007) Chromosomal aberrations in peripheral lymphocytes from male native miners working in the peruvian Andes, Genet. Mol. Biol. 30, 1135-1138. [CrossRef] [Google Scholar]
  • Scheepers P.T. et al.(2002) Biomarkers for occupational diesel exhaust exposure monitoring (biomodem) – A study in underground mining, Toxicol. Lett. 134, 305-317. [CrossRef] [PubMed] [Google Scholar]
  • Sinues B., Izquierdo M., Perez V. (1990) Chromosome aberrations and urinary thioesters in smokers, Mutat. Res. 240, 289-293. [CrossRef] [PubMed] [Google Scholar]
  • Smerhovsky Z., Landa K., Rossner P., Juzova D., Brabec M., Zudova Z., Hola N., Zarska H., Nevsimalova E. (2002) Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations, Mutat. Res. 514, 165-176. [CrossRef] [PubMed] [Google Scholar]
  • Suresh K., Ajoy K.C., Dhanasekaran A., Balasundar S., Santhanam R., Gajendiran V., Meenakshisundaram V. (2003) Investigation of Radiation Levels in Beach Sand Mineral Industries – A preliminary Study, Radiat. Prot. Environ. 26, 1-2. [Google Scholar]
  • Tanaka K., Kohda A., Toyokawa T., Ichinohe K., Oghiso Y. (2008) Chromosome aberration frequencies and chromosome instability in mice after long-term exposure to low-dose-rate gamma-irradiation, Mutat. Res. 657, 19-25. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka K., Kamada N. (2009) Distribution of breakpoints on chromatid-type aberration induced by three different radiations, in relation to fragile sites, Indian J. Sci. Technol. 2, 1-9. [Google Scholar]
  • Topaktas M., Rencüzodullari E., lla H.B., Kayraldiz A. (2002) Chromosome aberration and sister chromatid exchange in workers of the iron and steel factory of iskenderun Turkey, Teratog. Carcinog. Mutagen. 22, 411-423. [CrossRef] [PubMed] [Google Scholar]
  • Tucker J.D. (2008) Low-dose ionizing radiation and chromosome translocations: A review of the major considerations for human biological dosimetry, Mutat. Res. 659, 211-220. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR (2008) Sources and effects of ionizing radiation united Nations. N.Y. [Google Scholar]
  • Voisin P., Benderitter M., Claraz M., Chambrette V., Sorokine-Durm I., Delbos M., Durand V., Leroy A., Paillole N. (2001) The cytogenetic dosimetry of recent accidental over exposure, Cell Mol. Biol. 47, 557-564. [PubMed] [Google Scholar]
  • Wolf G., Arndt D., Kotschy-Lang N., Obe G. (2004) Chromosomal aberrations in uranium and coal miners, Int. J. Radiat. Biol. 80, 147-153. [CrossRef] [PubMed] [Google Scholar]
  • Zakeri F., Assaei R.G. (2004) Cytogenetic monitoring of personnel working in angiocardiography laboratories in Iran hospitals, Mutat. Res. 562, 1-9. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.