Free Access
Issue
Radioprotection
Volume 48, Number 4, Octobre-Décembre 2013
Page(s) 575 - 591
Section Articles
DOI https://doi.org/10.1051/radiopro/2013074
Published online 23 September 2013
  • Abbady A.G.E., Uosif M.A.M., El-Taher A. (2005) Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt, J. Environ. Radioact. 84 (1), 65-78. [CrossRef] [PubMed] [Google Scholar]
  • Ahmed N.K., El-Arabi A.G.M. (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, upper Egypt, J. Environ. Radioact. 84, 51-64. [CrossRef] [PubMed] [Google Scholar]
  • Alam M.N., Chowdhury M.I., Kamal M., Ghose S., Banu H., Chakraborty D. (1997) Radioactivity in Chemical Fertilizers Bangladesh Used in Bangladesh, Appl. Radiat. Isotopes 48 (8), 1165-1168. [CrossRef] [Google Scholar]
  • Alam M.N., Chowdhury M.I., Kamal M., Ghose S., Islam M.N., Anwaruddin M. (1999) Radiological Assessment of Drinking Water of the Chittagong Region of Bangladesh, Radiat. Prot. Dosim. 82, 207-214. [CrossRef] [Google Scholar]
  • Alcaraz Pelegrina J.M., Martinez-Aguirre A. (2001) Natural radioactivity in ground waters around a fertilizer factory complex in south of Spain, Appl. Radiat. Isotopes 55, 419-423. [CrossRef] [Google Scholar]
  • Al-Saleh F.S., Al-Berzan B. (2007) Measurements of natural radioactivity in some kinds of marble and granite used in Riyadh region, J. Nucl. Radiat. Phys. 2 (1), 25-36. [Google Scholar]
  • Bolivar J.P., Garcia-Tenorio R., Vaca F. (2000) Radioecological study of an estuarine system located in the south of Spain, Water Research 34 (11), 2941-2950. [CrossRef] [Google Scholar]
  • Bolivar J.P., Garcia-Tenorio R., Mas J.L., Vaca F. (2002) Radioactive impact in sediments from an estuarine system affected by industrial wastes releases, Environment International 27, 639-645. [CrossRef] [PubMed] [Google Scholar]
  • Brigden K., Stringer R., Santillo D. (2002) Heavy metal and radionuclide contamination of fertilizer products and phosphogypsum waste produced by the Lebanese chemical company, Lebanon, Greenpeace Research Laboratories, Technical Note 13. [Google Scholar]
  • Butchaiah G., Bonnet S., Menke C., Garivait S. (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines, Environmental Pollution 157, 1554-1558. [CrossRef] [Google Scholar]
  • Cevik U., Damla N., Karahan G., Çelebi N., Kobya A. (2006) Natural radioactivity in tap waters of Eastern Black Sea region of Turkey, Radiat. Prot. Dosim. 118 (1), 88-92. [CrossRef] [Google Scholar]
  • Chowdhury M.I., Alam M.N., Hazari S.K.S. (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard, Appl. Radiat. Isotopes 51, 747-755. [CrossRef] [Google Scholar]
  • Chowdhury M.I., Kamal M., Alam M.N., Yeasmin S., Mostafa M.N. (2006) Distribution of naturally occurring radionuclides in soils of the southern districts of Bangladesh, Radiat. Prot. Dosim. 118, 126-130. [CrossRef] [Google Scholar]
  • Conceicao F.T., Bonotto D.M. (2006). Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and there by products, Environmental Pollution 139, 232-243. [CrossRef] [Google Scholar]
  • El-Arabi A.M., Abbady A.G.E., Khalifa I.H. (2007) Radioactive and geochemistry characteristics of the Garnetiferous Granite of Um Sleimat area, Egypt, J. Earth Sciences 1 (1), 9-20. [Google Scholar]
  • El-Aydarous A. (2007) Gamma radioactivity levels and their corresponding external exposure of soil samples from Taif governorate, Saudi Arabia, Global J. Environmental Research 1 (2), 49-53. [Google Scholar]
  • El-Bahi S.M., El-Dine N.W., El-Shershaby A., Sroor A. (2004) Elemental analysis of Egyptian phosphate fertilizer components, Health Phys. 86 (3), 303-307. [CrossRef] [PubMed] [Google Scholar]
  • Ghose S., Alam M.N., Islam M.N. (2000) Concentrations of 222Rn, 226Ra and 228Ra in surface sea water of the Bay of Bengal, J. Environ. Radioact. 47, 291-300. [CrossRef] [Google Scholar]
  • Huy N.Q., Luyen T.V. (2006) Study on external exposures doses from terrestrial radioactivity in Southern Vietnam, Radiat. Prot. Dosim. 118, 331-336. [CrossRef] [Google Scholar]
  • Hopke P.K. (2009) Contemporary threats and air pollution, Atmos. Environ. 43, 87-93. [CrossRef] [Google Scholar]
  • Khan K., Khan H.M., Tufail M., Khatibeh A.J.A.H., Ahmad N. (1998) Radiometric analysis of hazara phosphate rock and fertilizers in Pakistan, J. Environ. Radioact. 38 (1), 77-84. [CrossRef] [Google Scholar]
  • Khalifa A.N. (2004) Natural Radioactivity of Ground and Drinking Water in Some Areas of Upper Egypt, Turkish J. Engineering and Environmental Science 28, 345-354. [Google Scholar]
  • Khater A.E.M., Higgy R.H., Pimpl M. (2001) Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits, Egypt, J. Environ. Radioact. 55, 255-267. [CrossRef] [PubMed] [Google Scholar]
  • Labidi S., Dochraoui M., Mahjoubi H., Lemaitre N., Salah R.B., Mtimet S. (2002) Natural Radioactive Nuclides in Some Tunisian Thermo-Mineral Springs, J. Environ. Radioact. 62, 87-96. [CrossRef] [PubMed] [Google Scholar]
  • Loganathan P., Tillman R.W., Parfitt R.L. (2007). Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley root growth, Environmental Pollution 145 (3), 778-786. [CrossRef] [Google Scholar]
  • Mehra R., Singh S., Singh K., Sonkawade R. (2007) 226Ra, 232Th and 40K analysis in soil samples from some areas of Malwa region, Punjab, India using gamma ray spectrometry, Environ. Monit. Assess. 134, 333-342. [CrossRef] [PubMed] [Google Scholar]
  • Mireles F., Davila J.I., Quirino L.L., Lugo J.F., Pinedo J.L., Rios C. (2003) Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico, Health Phys. 84, 368-372. [CrossRef] [PubMed] [Google Scholar]
  • Mourad N.M., Sharshar T., Elnimr T., Mousa M.A. (2009) Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt, Appl. Radiat. Isotopes 67, 1259-1268. [CrossRef] [Google Scholar]
  • Nuclear Energy Agency Organization for Economic Cooperation and Development, NEA-OECD (1979) Exposure to Radiation from Natural Radioactivity in Building Materials, Report by the NEA Group of Experts, OECD, Paris. [Google Scholar]
  • Ogunleye P.O., Mayaki M.C., Amapu I.Y. (2002) Radioactivity and heavy metal composition of Nigerian phosphate rock: possible environmental implications, J. Environ. Radioact. 62, 39-48. [CrossRef] [PubMed] [Google Scholar]
  • Olszewska-Wasiolek M. (1995) Estimates of the occupational radiological hazard in phosphate fertilizers industry in Poland, Radiat. Prot. Dosim. 58, 269-276. [Google Scholar]
  • Radenkovic M.B., Alshikh S.M., Andric V.B., Miljanic S.S. (2009) Radioactivity of sand from several renowned public beaches and assessment of the corresponding environmental risks, J. Serbian Chem. Soc. 74 (4), 461-470. [CrossRef] [Google Scholar]
  • Righi S., Betti M., Bruzzi L., Mazzotti G. (2000) Monitoring of natural radioactivity in working places, Microchem. J. 67, 119-126. [CrossRef] [Google Scholar]
  • Righi S., Lucialli P., Bruzzi L. (2005) Health and Environmental Impacts of a Fertilizer Plant-Part I: Assessment of Radioactive Pollution, J. Environ. Radioact. 82 (2), 167-182. [CrossRef] [PubMed] [Google Scholar]
  • Salbu B., Skipperud L. (2009) Speciation of radionuclides in the environment, J. Environ. Radioact. 100, 281-282. [CrossRef] [PubMed] [Google Scholar]
  • Sam A.K., Holm E. (1995) The natural radioactivity in phosphate deposits from Sudan, Sci. Total Environ. 162, 173-178. [CrossRef] [Google Scholar]
  • Santos A.J.G., Mazzilli B.P., Fávaro D.I.T., Silva P.S.C. (2006) Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods, J. Environ. Radioact. 87 (1), 52-61. [CrossRef] [PubMed] [Google Scholar]
  • Saueia C.H.R., Mazzilli B.P., Fávaro D.I.T. (2005) Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil, J. Radioanal. Nucl. Chem. 264 (2), 445-448. [CrossRef] [Google Scholar]
  • Saueia C.H.R., Mazzilli B.P. (2006) Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil, J. Environ. Radioact. 89 (3), 229-239. [CrossRef] [PubMed] [Google Scholar]
  • Somlai J., Horvath G., Kanyar B., Kovacs T., Bo-drogi E., Kavasi N. (2002) Concentration of Ra-226 in Hungarian Bottled Mineral Water, J. Environ. Radioact. 62, 235-240. [CrossRef] [PubMed] [Google Scholar]
  • Tufail M., Iqbal M., Mirza S.M. (2000) Radiation doses due to natural radioactivity in Pakistan marble, Radioprotection 34, 355-359. [Google Scholar]
  • Uchida S., Tagami K., Hirai I. (2007) Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides, J. Nucl. Sci. Technol. 44 (4), 628-640. [CrossRef] [Google Scholar]
  • UNEP (United Nations Environmental Programme Industry and Environment) (1998) Mineral fertilizer production and the environment, the fertilizer industry’s manufacturing processes and environmental issues. Technical Reports No. 26-Part 1. [Google Scholar]
  • UNSCEAR (1982) Ionizing radiation: sources and biological effects. United Nations, New York. [Google Scholar]
  • UNSCEAR (1988) Sources, effects and risks of ionizing radiation: 1988 report to the General Assembly, with annexes, New York. [Google Scholar]
  • UNSCEAR (1998) Sources and Effects of Ionizing Radiation, United Nations, New York. [Google Scholar]
  • UNSCEAR (2000) Effects and risks of ionizing radiations, New York. [Google Scholar]
  • Wang X., Sato T., Xing B., Tao S. (2005) Health risks of heavy metals to general public Tianjin, China via consumption of vegetables and fish, Sci. Total Environ. 350, 28-37. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.