Free Access
Issue
Radioprotection
Volume 48, Number 3, Juillet-Septembre 2013
Page(s) 367 - 389
Section Articles
DOI https://doi.org/10.1051/radiopro/2013063
Published online 17 June 2013
  • Belot Y. (1986) Tritium in plants: a review, Radiat. Prot. Dosim. 16 (1-2), 101-105. [Google Scholar]
  • Belovodski L.F., Gaevoi V.K., Grichmanovski V.I. (1985) Tritium, Moscow Energoatomizdat. [Google Scholar]
  • Black A.L., Baker N.F., Bartley J.C., Chapman T.E, Philips R.W. (1964) Water turnover in cattle, Science 144, 876-878. [CrossRef] [PubMed] [Google Scholar]
  • Boyer C., Guetat Ph., Fromm M., Vichot L., Losset Y., Tatin-Froux F., Badot P.M. (2008) Tritium in plants: A review of current knowledge, Environmental and Experimental Botany 67, 34-51. [CrossRef] [Google Scholar]
  • Boyer C. (2009) Étude des transferts du tritium atmosphérique chez la laitue: étude cinétique, état d'équilibre et intégration du tritium sous forme organique lors d'une exposition atmosphérique continue, Thèse de l’Université de Franche-Comté. [Google Scholar]
  • Boyer C., Vichot L., Boissieux T., Losset Y., Mavon C., Tatin-Froux F., Fromm M., Badot P.M. (2009a) Variations of conversion rate from Tissue Free Water Tritium to Organically-Bound Tritium in lettuces continuously exposed to atmospheric HT and HTO, Radioprotection 44 (5), 671-676. [CrossRef] [EDP Sciences] [Google Scholar]
  • Boyer C., Guetat Ph., Fromm M., Vichot L., Losset Y., Tatin-Froux F., Mavon C., Badot P.M. (2009b) Étude du transfert du tritium aux végétaux via les ratios OBT/HTOair et OBT/HTO libre, Journées Tritium Société Française de Radioprotection Section Environnement, Paris 23-24 Septembre. [Google Scholar]
  • Choi Y.H. et al. (2002) Tissue free water tritium and organically bound tritium in the rice plant acutely exposed to atmospheric HTO vapor under semi-outdoor conditions, J. Environ. Radioact. 58, 67-85. [Google Scholar]
  • Davis P.A., Kotzer T.G., Workman W.J.G. (2002) Environmental Tritium Concentrations due to continuous atmospheric sources, Fusion Science and Technology 41, 453-457. [Google Scholar]
  • Davis P.A., Leclerc E., Galeriu D.C., Melintescu A., Kashparov V.S., Peterson R., Ravi P.M., Siclet F., Tamponnet C. (2009) Specific activity models and parameter values for tritium, 14C and 36Cl, in Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA-TECDOC-1616. [Google Scholar]
  • DeVol T.A., Powell B.A. (2004) Thoerical organically bound tritium dose estimates, Health Phys. 86 (2), 183-186. [Google Scholar]
  • Diabaté S., Strack S. (1993) Organically bound tritium, Health Phys. 65 (6), 698-712. [Google Scholar]
  • Dinner P.J., Gorman D.J., Spencer F.S. (1980) Tritium dynamics in vegetables: Experimental results, Appl. Radiat. Isotopes 31 (8), 460-468. [Google Scholar]
  • Favier J. (1985) Composition du lait de vache – II. Laits de consommation, Cah. Nutr. Diét. 20, 355-363. [Google Scholar]
  • Galeriu D. et al. (2007) Modelling 3H and 14C transfer to farm animals and their products under steady state conditions, J. Environ. Radioact., DOI:10.1016 / j.jenvrad.2006.11.010. [Google Scholar]
  • Galeriu D., Melintescu A., Beresford N.A., Takeda H., Crout N.M.J. (2008) The dynamic transfer of 3H and 14C in mammals: a proposed generic model, Radiat. Environ. Biophys., DOI: 10.1007/s00411-008-0193-9. [Google Scholar]
  • Galeriu D., Melintescu A. (2011) A model approach for tritium dynamics in wild mammals, Radioprotection 46 (6), S445-S451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guenot J., Belot Y. (1984) Assimilation of 3H in photosynthesizing leaves exposed to HTO, Health Phys. 47 (6), 849-855. [CrossRef] [PubMed] [Google Scholar]
  • Guetat Ph., Patryl L. (2004) Analysis of the consequences of an acute atmospheric release of tritium, “Tritium 2004 baden-baden”, Fusion Science and Technology 48 (1), 441-444. [Google Scholar]
  • ICRP Publication 30 (1978) Limits for intakes of radionuclides by workers, Part 1. Ann ICRP 2 (3/4) Pergamon Press, Oxford. [Google Scholar]
  • ICRP Publication 56 (1989) Age-dependent doses to members of the public from intakes of radionuclide, Part 1, Annals of the ICRP 20(1) Pergamon Press, Oxford. [Google Scholar]
  • Jean-Baptiste P., Fourré E., Baumier D., Dapoigny A. (2011) Environmental OBT/TFWT ratios revisited Tritium 2010, Fusion Science and Technology 60 (4), 1248-1251. [Google Scholar]
  • Kim M.A., Baumgärtner F. (1991) Tritium Fractionation in Biological Systems and in Analytical Procedures, Radiochim. Acta 54, 121-128. [Google Scholar]
  • Kim M.A., Baumgärtner F. (1994) Equilibrium and non-equilibrium partition of tritium between organics and tissue water of different biological systems, Applied Radiation and Isotopes 45, 353-360. [CrossRef] [Google Scholar]
  • Kirchmann R., Lafontaine A., Van den Hoek J., Koch G. (1969) Transfert et repartition du tritium dans les constituants principaux du lait de vaches alimentées avec de l’eau contaminée, Compte-rendu de séance de la Société Belge de Biologie 163, 1459-1463. [Google Scholar]
  • Kistner G.N. (1971) Tritium excretion via cow’s milk after continuous intake of tritiated water, Tritium Symposium, Las Vegas, 30 août-2 septembre. [Google Scholar]
  • Kline J.R., Stewart M.L (1974) Tritium uptake and loss in grass vegetation which has been exposed to an atmospheric source of tritiated water, Health Phys. 26, 576-573. [CrossRef] [Google Scholar]
  • Le Guen B. (2008) Impact du tritium autour des centrales nucléaires EDF, Radioprotection 43 (2), 177-191. [CrossRef] [EDP Sciences] [Google Scholar]
  • McFarlane J.C. (1976) Tritium fractionation in plants, Environmental and Experimental Botany 16, 9-14. [CrossRef] [Google Scholar]
  • Okada S., Momoshima N. (1993) Overview of tritium: characteristics, sources and problems, Health Phys. 65, 595-608. [CrossRef] [PubMed] [Google Scholar]
  • Murphy C. (1993) Tritium Transport and Cycling in the Environment, Health Phys. 65 (6), 683-697. [CrossRef] [PubMed] [Google Scholar]
  • Peterson S.-R., Davis P.A. (2002) Tritium doses from chronic atmospheric releases: a new approach proposed for regulatory compliance, Health Phys. 82 (2), 213-225. [CrossRef] [PubMed] [Google Scholar]
  • Peterson S.-R. (2008) Dose to the public from tritium released to the atmosphere from the Livermoore site of Laurence Livermore National Laboratory, 1953 through 2005, Health Phys. 95 (2), 190-202. [CrossRef] [PubMed] [Google Scholar]
  • Raskob W., Barry P. (1997) Importance and variability in processes relevant to environmental Tritium ingestion models, J. Environ. Radioactivity 36 (263), 237-251. [CrossRef] [Google Scholar]
  • Spencer F.S. (1984) Tritiated water uptake kinetics in tissue-free water and organically-bound fractions of tomato plants, Ontario Hydro Research Division. [Google Scholar]
  • Thompson R.C., Ballou J.E. (1954) Studies of metabolic turnover with tritium as a tracer-IV. Metabolically inert lipide and protein fractions from the rat, J. Biol. Chem. 208, 883-888. [PubMed] [Google Scholar]
  • Van den Hoek, J., Ten Have M.H.J. (1983) The metabolism of tritium and water in the lactating dairy cow, Health Phys. 44, 127-133. [CrossRef] [PubMed] [Google Scholar]
  • Vichot L., Boyer C., Boissieux T. (2007) Organically bound tritium in the environment: first investigation of environmental survey in the vicinity of a French research centre, Fusion science and technology 54 (1), 253-256. [Google Scholar]
  • Vichot L., Boyer C., Boissieux T. (2008) Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release, J. Environ. Radioact. 99 (10), 1636-1643. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.