Free Access
Issue |
Radioprotection
Volume 43, Number 3, Juillet-Septembre 2008
|
|
---|---|---|
Page(s) | 357 - 387 | |
DOI | https://doi.org/10.1051/radiopro:2008005 | |
Published online | 16 September 2008 |
- Beaudré A. (1988) Simulation spatio-temporelle sur ordinateur des processus radiolytiques induits dans l’eau par des électrons, Thèse de doctorat d’université, N° 371, CPAT de Toulouse. [Google Scholar]
- Biosym (1995) Molecular simulation, user guides 95.O, San Diego, CA. [Google Scholar]
- Boyd A.W., Carver M.B., Dixon R.S. (1980) Computed and experimental product concentrations in the radiolysis of water, Radiat. Phys. Chem. 15, 177-185. [Google Scholar]
- Burkert U., Allinger N.L. (1982) Molecular Mechanica, ACS Monogrph 177. American Chemical Society, Washington Dc. [Google Scholar]
- Burns W.G., Curtis A.R. (1984) Radiation chemical diffusion kinetic calculations with prescribed and non prescribed diffusion, Radiat. Phys. Chem. 23, 43-150. [Google Scholar]
- Burns W.G., May R., Baverstock K.F. (1981) Oxygen as a product of water radiolysis in high LET tracks. I. The origin of the hydroperoxyl radical in water radiolysis, Rad. Res. 86, 1-19. [CrossRef] [Google Scholar]
- Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radical in aqueous solution, J. Phys. Chem. 17, 513-886. [Google Scholar]
- Chandrasekhar S. (1943) Stochastic problems in physic and astronomy, Rev. Mod. Phys. 15, 1-89. [NASA ADS] [CrossRef] [Google Scholar]
- Clifford P., Green N.J.B., Oldfield M.J., Pilling M.J., Pimbolott S.M. (1986) Stochastic models of multi-species Kinetics in radiation induced spurs, J. Chem. Soc. Far Trans. 82, 2673-2689. [CrossRef] [Google Scholar]
- Demonchy M. (1997) Modélisation de l’effet primaire des rayonnements sur l’ADN dans son environnement, Thèse de Doctorat d’université, CPAT de Toulouse. [Google Scholar]
- Ferradini C., Puchault J. (1983) Biologie de l’action des rayonnements ionisants. Masson, Paris. [Google Scholar]
- Hill M.A., Smith F.A. (1994) Calculation of initial and primary yields in the radiolysis of water, Radiat. Phys. Chem. 43, 265-280. [CrossRef] [Google Scholar]
- Jonah C.D., Miller J.R. (1977) Yield and decay of the OH from 200 ps to 3 ns, J. Phys. Chem. 81, 1974-1976. [CrossRef] [Google Scholar]
- Jonah C.D., Hart E.J., Matheson M.S. (1976) Yield and decay of the hydrated electron from 100 ps to 3 ns, J. Phys. Chem. 80, 1267-1270. [CrossRef] [Google Scholar]
- Kalos M.H., Whitlock P.A. (1986) Monte Carlo Methods, Vol. I: Basics. John Wiley & Sons. [Google Scholar]
- Kuppermann A. (1961) Diffusion kinetics in radiation chemistry, Chem. Biol. Act. Rad. 5, 85-166. [Google Scholar]
- Kutcher G.J., Green A.E.S. (1976) A model for energy deposition in liquid water, Rad. Res. 67, 408-425. [CrossRef] [Google Scholar]
- Métropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller E. (1953) Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087-1092. [NASA ADS] [CrossRef] [Google Scholar]
- Michaud M., Sanche L. (1987a) Absolute vibrational excitation cross sections for slow electron (1-18 eV) scattering in solid H2O, Phys. Rev. A 36, 4684-4699. [CrossRef] [PubMed] [Google Scholar]
- Michaud M., Sanche L. (1987b) Total cross sections slow–electron (1-20 eV) scattering in solid H2O, Phys. Rev. A 36, 4672-4683. [CrossRef] [PubMed] [Google Scholar]
- Mozumder A., Magee J.L. (1973) A simplified approach to diffusion controlled electron at times greater than 200 ps, J. Phys. Chem. 77, 1838-1843. [CrossRef] [Google Scholar]
- Neff H., Sass J.K., Leweren H.J., Ibach H. (1980) Phtoemission studies of electron localization at very low excess energies, J. Phys. Chem. 84, 1135-1339. [CrossRef] [Google Scholar]
- Onsager L. (1938) Initial recombinaison of ions, Phys. Rev. 54, 554-557. [CrossRef] [Google Scholar]
- Patau J.P., Malbert M., Terrissol M., Commanay L. (1973) Fourth symposium on Microdosimetry, Pallanza Italy, Eur. 5122 d.e.f. [Google Scholar]
- Pimblott S.M., La Verne J.A. (1997) Stochastic simulation of the electron rdiolysis of water and aqueous solutions, J. Phys. Chem. A 101, 5828-5838. [CrossRef] [Google Scholar]
- Saifi A. (1991) Application de l’approche déterministe à l’étude sur ordinateur des processus radiolytiques induits dans l’eau par des électrons, Thèse de doctorat d’université, N° 915, Toulouse. [Google Scholar]
- Schwarz H.A. (1969) Applications of the spur diffusion model to the radiation chemistry of aqueous solutions, J. Phys. Chem. 73, 1928-1937. [CrossRef] [Google Scholar]
- Sumiyoshi T., Katayama M. (1982) The yield of hydrated electron at 30 ps, Chem. Lett. 12, 1887-1890. [CrossRef] [Google Scholar]
- Terrissol M., Demonchy M., Pomplum E. (1997) A new approach of radiation transport in the complex DNA environment, Microdosimetry, an interdisciplinary approach, Goodhead D.T., O’Neil P., Menzel H.G., Eds. The royal Society of Chemistry, Cambridge, UK, pp. 15-18. [Google Scholar]
- Trumbore C.N., Short D.R., Fanning J.E., Olson J.H. (1978) Effects of pulse dose on hydrated electron decay kinetics in the pulse radiolysis of water. A computer modeling study, J. Chem. Phys. 82, 2762-2767. [CrossRef] [Google Scholar]
- Turner J.E., Hamm R.N., Wright H.A., Ritchie R.M., Magee J.L., Chaterjee A., Bolch W.E. (1988) Studies to link the basic radiation physics and chemistry of liquid water, Rad. Res. Chem. 32, 503-510. [Google Scholar]
- Vrigneaud J.M. (2000) Développement d’un modèle biophysique pour l’évaluation des dommages radio–induits dans la fibre chromosomique, Thèse de doctorat d’université, CPAT de Toulouse. [Google Scholar]
- Zaider M., Brenner D.J. (1984) On the stochastic treatment of fast chemical reactions, Rad. Res. 100, 245-256. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.