Open Access
Numéro |
Radioprotection
Volume 59, Numéro 4, October - December 2024
|
|
---|---|---|
Page(s) | 296 - 305 | |
DOI | https://doi.org/10.1051/radiopro/2024030 | |
Publié en ligne | 13 décembre 2024 |
- Agostinelli S, Allison J, Amako K, et al. 2003. Geant4 a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506: 250–303. [CrossRef] [Google Scholar]
- Allison J, Amako K, Apostolakis J et al. 2016. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 835: 186–225. [CrossRef] [Google Scholar]
- Askri B, Manai K, Bouzouita A, et al. 2023. Estimation of the gamma-ray field in air from radioactive sources in the ground by numerical solution of the Boltzmann transport equation. Radiat. Protect. Dosim. 199: 631–645. [CrossRef] [PubMed] [Google Scholar]
- Askri B. 2016. Monte Carlo method for determining the response of portable gamma detector for in situ measurement of terrestrial gamma ray field. Nucl. Sci. Technol. 27: 81. [CrossRef] [Google Scholar]
- Askri B. 2015. Application of optimised geometry for the Monte Carlo simulation of a gamma-ray field in air created by sources distributed in the ground. Radiat. Meas. 72: 1–11. [Google Scholar]
- Askri B, Manai K, Trabelsi A, et al. 2008. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons. Radiat. Protect. Dosim. 128: 279–288. [Google Scholar]
- Clouvas A, Xanthos S, Domis-Antonopoulos M, et al. 2000. Monte Carlo calculation of dose rate conversion factors. Health Phys. 78: 295–302. [Google Scholar]
- Eckerman KF, Ryman JC. 1993. External Exposure to Radionuclides in Air, Water, and Soil. Federal Guidance Report No. 12. United States of Environmental Protection Agency, Washington DC. [Google Scholar]
- ICRP. 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: 1–201. [CrossRef] [Google Scholar]
- ICRP. 1995. Basic Anatomical & Physiological Data for use in Radiological Protection − The Skeleton. ICRP Publication 70. Ann. ICRP 25: 1–80. [Google Scholar]
- ICRP. 2002. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP 32: 1–277. [Google Scholar]
- ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37: 1–332. [Google Scholar]
- ICRP. 2009. Adult reference computational phantoms, ICRP Publ. 110. Ann. ICRP 39: 1–166. [Google Scholar]
- ICRP. 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40: 1–257. [Google Scholar]
- ICRP. 2020. Dose Coefficients for External Exposures to Environmental Sources. ICRP Publication 144, Ann. ICRP 49: 11–145. [Google Scholar]
- Incerti S, Brown J, Guatelli S. 2020. Advances in Geant4 applications in medicine. Phys. Med. 70: 224–227. [Google Scholar]
- Jacob P, Paretzke HG, Rosenbaum H, et al. 1986. Effective dose equivalents for photon exposures from plane sources on the ground. Radiat. Protect. Dosim. 14: 299–310. [Google Scholar]
- Johnson JR, Dunford DW. 1985. Comparison of the ICRP and MIRD models for Fe metabolism in man. Health Phys. 49: 211–219. [Google Scholar]
- Krstic D, Nikezic D. 2009. External doses to humans from 137Cs in soil. Health Phys. 91: 249–257. [Google Scholar]
- Kramer R, Zankl M, Williams G, Drexler G. 1982. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: Part I. The male (Adam) and female (Eva) adult mathematical phantoms. GSF-Bericht S-885. Neuherberg: GSF—National Research Center for Environment and Health. [Google Scholar]
- Malins A, Machida M, Saito K, et al. 2015. Comment on ‘Update of 40K and 226Ra and 232Th series γ-to-dose conversion factors for soil’. J. Environ. Radioact. 144: 179–180. [Google Scholar]
- Portugal M, Baptista M, Vaz P, et al. 2022. Patients’ organ dose and risk assessment in interventional cardiology procedures. Radiat. Phys. Chem. 198: 110253. [Google Scholar]
- Petoussi-Henss N, Jacob P, Zankl M, et al. 1991. Organ doses for foetuses, babies, children and adults from environmental gamma rays. Radiat. Protect. Dosim. 37: 31–41. [Google Scholar]
- Rezaeian P, Khandan LT, Torabi H, et al. 2022. Fabrication of head phantom to investigate the effect of heterogeneity on the absorbed dose in radiotherapy. Iran J Sci Technol Trans Sci 46: 1295–1300. [CrossRef] [Google Scholar]
- Saito K, Moriuchi S. 1985. Development of a Monte Carlo code for the calculation of gamma ray transport in the natural environment. Radiat. Protect. Dosim. 12: 21–28. [Google Scholar]
- Saito K, Jacob P. 1995. Gamma ray field in the air due to sources in the ground. Radiat. Protect. Dosim. 58: 29–45. [Google Scholar]
- Saito K. 1991. External dose due to terrestrial gamma rays on the snow cover. Radiat. Protect. Dosim. 35: 31–39. [Google Scholar]
- Sanusi MSM, Hassan WMSW, Hashim S, et al. 2021. Tabulation of organ dose conversion factors for terrestrial radioactivity monitoring program. Appl. Radiat. Isot. 109791. [Google Scholar]
- Snyder WS, Ford MR, Warner GG. 1978. Estimates of specific absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom MIRD Pamphlet 5, revised. New York: Society of Nuclear Medicine. [Google Scholar]
- Xu X, Xiao-Min Z, Jing N, et al. 2023. Study on the 24Na specific activity induced by external neutron irradiation based on ICRP 110 computational phantoms. Appl. Radiat. Isot. 195: 110735. [Google Scholar]
- Zankl M, Petoussi-Henss N, Drexler G, et al. 1997. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods Part VII: Organ Doses Due to Parallel and Environmental Exposure Geometries. GSF-Berich. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.