Accès gratuit
Volume 55, Numéro 3, July-September 2020
Page(s) 173 - 178
Publié en ligne 15 mai 2020
  • Andronis C et al. 2011. Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform. 12: 357–368. [CrossRef] [PubMed] [Google Scholar]
  • Baker S et al. 2016. Automatic semantic classification of scientific literature according to the hallmarks of cancer. Bioinformatics 32: 432–440. [CrossRef] [PubMed] [Google Scholar]
  • Barber AG et al. 2015. PI3K/AKT pathway regulates E-cadherin and desmoglein 2 in aggressive prostate cancer. Cancer Med. 4: 1258–1271. [Google Scholar]
  • Cannon DM et al. 2013. Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J. Clin. Oncol. 31: 4343–4348. [CrossRef] [PubMed] [Google Scholar]
  • Chen W et al. 2016. Cancer statistics in China, 2015. CA Cancer J. Clin. 66: 115–132. [CrossRef] [Google Scholar]
  • Das SK et al. 2007. Predicting lung radiotherapy-induced pneumonitis using a model combining parametric Lyman probit with nonparametric decision trees. Int. J. Radiat. Oncol. Biol. Phys. 68: 1212–1221. [CrossRef] [PubMed] [Google Scholar]
  • Du L et al. 2018. GSTP1 Ile105Val polymorphism might be associated with the risk of radiation pneumonitis among lung cancer patients in Chinese population: A prospective study. J. Cancer 9: 726–735. [CrossRef] [PubMed] [Google Scholar]
  • Farr KP et al. 2015. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study. Radiother. Oncol. 117: 9–16. [PubMed] [Google Scholar]
  • Ferlay J et al. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127: 2893–2917. [CrossRef] [Google Scholar]
  • Harpaz R et al. 2014. Text mining for adverse drug events: The promise, challenges, and state of the art. Drug. Saf. 37: 777–790. [CrossRef] [PubMed] [Google Scholar]
  • Hawkins PT et al. 2015. PI3K signalling in inflammation. Biochim. Biophys. Acta 1851: 882–897. [CrossRef] [PubMed] [Google Scholar]
  • Hunter L et al. 2006. Biomedical language processing: What’s beyond PubMed? Mol. Cell 21: 589–594. [CrossRef] [PubMed] [Google Scholar]
  • Korhonen A et al. 2012. Text mining for literature review and knowledge discovery in cancer risk assessment and research. PLoS One 7: e33427. [Google Scholar]
  • Lee M et al. 2014. Of text and gene – using text mining methods to uncover hidden knowledge in toxicogenomics. BMC Syst. Biol. 8: 93. [Google Scholar]
  • Li P et al. 2016. Single nucleotide polymorphisms in CBLB, a regulator of T-Cell response, predict radiation pneumonitis and outcomes after definitive radiotherapy for non-small-cell lung cancer. Clinical Lung Cancer 17: 253–262.e5. [CrossRef] [PubMed] [Google Scholar]
  • Liu H et al. 2014. Integrating in silico resources to map a signaling network. Methods Mol. Biol. 1101: 197–245. [CrossRef] [PubMed] [Google Scholar]
  • Medhora M et al. 2012. Dose-modifying factor for captopril for mitigation of radiation injury to normal lung. J. Radiat. Res. 53: 633–640. [CrossRef] [PubMed] [Google Scholar]
  • Miyoshi K et al. 2013. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am. J. Respir. Crit. Care Med. 187: 262–275. [CrossRef] [PubMed] [Google Scholar]
  • Nogales-Cadenas R et al. 2009. GeneCodis: Interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 37: W317–W322. [CrossRef] [PubMed] [Google Scholar]
  • Rubin P et al. 1995. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 33: 99–109. [CrossRef] [PubMed] [Google Scholar]
  • Schallenkamp JM et al. 2007. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates. Int. J. Radiat. Oncol. Biol. Phys. 67: 410–416. [CrossRef] [PubMed] [Google Scholar]
  • Shim JS et al. 2014. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10: 654–663. [CrossRef] [PubMed] [Google Scholar]
  • Simpson MS et al. 2012. Biomedical text mining: A survey of recent progress, Mining text data. Springer, pp. 465–517. [Google Scholar]
  • Szklarczyk D et al. 2015. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43: D447–D452. [CrossRef] [PubMed] [Google Scholar]
  • Tabas-Madrid D et al. 2012. GeneCodis3: A non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 40: W478–W483. [CrossRef] [PubMed] [Google Scholar]
  • Tang Y et al. 2016. Genetic variants in PI3K/AKT pathway are associated with severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Cancer Med. 5: 24–32. [Google Scholar]
  • Tsoutsou PG et al. 2006. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int. J. Radiat. Oncol. Biol. Phys. 66: 1281–1293. [CrossRef] [PubMed] [Google Scholar]
  • Tsoyi K et al. 2018. Syndecan-2 attenuates radiation-induced pulmonary fibrosis and inhibits fibroblast activation by regulating PI3K/Akt/ROCK pathway via CD148. Am. J. Respir. Cell Mol. Biol. 58: 208–215. [CrossRef] [PubMed] [Google Scholar]
  • Wang D et al. 2012. Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy. Radiat. Oncol. 7: 69. [CrossRef] [PubMed] [Google Scholar]
  • Wen J et al. 2018. Potentially functional variants of ATG16L2 predict radiation pneumonitis and outcomes in patients with non-small cell lung cancer after definitive radiotherapy. J. Thorac. Oncol. 13: 660–675. [Google Scholar]
  • Yan Z et al. 2014. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun. Rev. 13: 1020–1025. [Google Scholar]
  • Yarnold J et al. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97: 149–1461. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y et al. 2012. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 83 740–748. [CrossRef] [PubMed] [Google Scholar]
  • Zhu F et al. 2013. Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46: 200–211. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.