Free Access
Issue
Radioprotection
Volume 55, Number 3, July-September 2020
Page(s) 173 - 178
DOI https://doi.org/10.1051/radiopro/2020048
Published online 15 May 2020
  • Andronis C et al. 2011. Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform. 12: 357–368. [CrossRef] [PubMed] [Google Scholar]
  • Baker S et al. 2016. Automatic semantic classification of scientific literature according to the hallmarks of cancer. Bioinformatics 32: 432–440. [CrossRef] [PubMed] [Google Scholar]
  • Barber AG et al. 2015. PI3K/AKT pathway regulates E-cadherin and desmoglein 2 in aggressive prostate cancer. Cancer Med. 4: 1258–1271. [Google Scholar]
  • Cannon DM et al. 2013. Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J. Clin. Oncol. 31: 4343–4348. [CrossRef] [PubMed] [Google Scholar]
  • Chen W et al. 2016. Cancer statistics in China, 2015. CA Cancer J. Clin. 66: 115–132. [CrossRef] [Google Scholar]
  • Das SK et al. 2007. Predicting lung radiotherapy-induced pneumonitis using a model combining parametric Lyman probit with nonparametric decision trees. Int. J. Radiat. Oncol. Biol. Phys. 68: 1212–1221. [CrossRef] [PubMed] [Google Scholar]
  • Du L et al. 2018. GSTP1 Ile105Val polymorphism might be associated with the risk of radiation pneumonitis among lung cancer patients in Chinese population: A prospective study. J. Cancer 9: 726–735. [CrossRef] [PubMed] [Google Scholar]
  • Farr KP et al. 2015. Inclusion of functional information from perfusion SPECT improves predictive value of dose-volume parameters in lung toxicity outcome after radiotherapy for non-small cell lung cancer: A prospective study. Radiother. Oncol. 117: 9–16. [PubMed] [Google Scholar]
  • Ferlay J et al. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127: 2893–2917. [CrossRef] [Google Scholar]
  • Harpaz R et al. 2014. Text mining for adverse drug events: The promise, challenges, and state of the art. Drug. Saf. 37: 777–790. [CrossRef] [PubMed] [Google Scholar]
  • Hawkins PT et al. 2015. PI3K signalling in inflammation. Biochim. Biophys. Acta 1851: 882–897. [CrossRef] [PubMed] [Google Scholar]
  • Hunter L et al. 2006. Biomedical language processing: What’s beyond PubMed? Mol. Cell 21: 589–594. [CrossRef] [PubMed] [Google Scholar]
  • Korhonen A et al. 2012. Text mining for literature review and knowledge discovery in cancer risk assessment and research. PLoS One 7: e33427. [Google Scholar]
  • Lee M et al. 2014. Of text and gene – using text mining methods to uncover hidden knowledge in toxicogenomics. BMC Syst. Biol. 8: 93. [Google Scholar]
  • Li P et al. 2016. Single nucleotide polymorphisms in CBLB, a regulator of T-Cell response, predict radiation pneumonitis and outcomes after definitive radiotherapy for non-small-cell lung cancer. Clinical Lung Cancer 17: 253–262.e5. [CrossRef] [PubMed] [Google Scholar]
  • Liu H et al. 2014. Integrating in silico resources to map a signaling network. Methods Mol. Biol. 1101: 197–245. [CrossRef] [PubMed] [Google Scholar]
  • Medhora M et al. 2012. Dose-modifying factor for captopril for mitigation of radiation injury to normal lung. J. Radiat. Res. 53: 633–640. [CrossRef] [PubMed] [Google Scholar]
  • Miyoshi K et al. 2013. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am. J. Respir. Crit. Care Med. 187: 262–275. [CrossRef] [PubMed] [Google Scholar]
  • Nogales-Cadenas R et al. 2009. GeneCodis: Interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 37: W317–W322. [CrossRef] [PubMed] [Google Scholar]
  • Rubin P et al. 1995. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 33: 99–109. [CrossRef] [PubMed] [Google Scholar]
  • Schallenkamp JM et al. 2007. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates. Int. J. Radiat. Oncol. Biol. Phys. 67: 410–416. [CrossRef] [PubMed] [Google Scholar]
  • Shim JS et al. 2014. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10: 654–663. [CrossRef] [PubMed] [Google Scholar]
  • Simpson MS et al. 2012. Biomedical text mining: A survey of recent progress, Mining text data. Springer, pp. 465–517. [Google Scholar]
  • Szklarczyk D et al. 2015. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43: D447–D452. [CrossRef] [PubMed] [Google Scholar]
  • Tabas-Madrid D et al. 2012. GeneCodis3: A non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 40: W478–W483. [CrossRef] [PubMed] [Google Scholar]
  • Tang Y et al. 2016. Genetic variants in PI3K/AKT pathway are associated with severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Cancer Med. 5: 24–32. [Google Scholar]
  • Tsoutsou PG et al. 2006. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int. J. Radiat. Oncol. Biol. Phys. 66: 1281–1293. [CrossRef] [PubMed] [Google Scholar]
  • Tsoyi K et al. 2018. Syndecan-2 attenuates radiation-induced pulmonary fibrosis and inhibits fibroblast activation by regulating PI3K/Akt/ROCK pathway via CD148. Am. J. Respir. Cell Mol. Biol. 58: 208–215. [CrossRef] [PubMed] [Google Scholar]
  • Wang D et al. 2012. Functional dosimetric metrics for predicting radiation-induced lung injury in non-small cell lung cancer patients treated with chemoradiotherapy. Radiat. Oncol. 7: 69. [CrossRef] [PubMed] [Google Scholar]
  • Wen J et al. 2018. Potentially functional variants of ATG16L2 predict radiation pneumonitis and outcomes in patients with non-small cell lung cancer after definitive radiotherapy. J. Thorac. Oncol. 13: 660–675. [Google Scholar]
  • Yan Z et al. 2014. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun. Rev. 13: 1020–1025. [Google Scholar]
  • Yarnold J et al. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97: 149–1461. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y et al. 2012. Oxidative stress mediates radiation lung injury by inducing apoptosis. Int. J. Radiat. Oncol. Biol. Phys. 83 740–748. [CrossRef] [PubMed] [Google Scholar]
  • Zhu F et al. 2013. Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46: 200–211. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.