Accès gratuit
Cet article a une note :[https://doi.org/10.1051/radiopro/2018005]
[https://doi.org/10.1051/radiopro/2017036]
Numéro |
Radioprotection
Volume 52, Numéro 4, October-December 2017
|
|
---|---|---|
Page(s) | 231 - 240 | |
DOI | https://doi.org/10.1051/radiopro/2017034 | |
Publié en ligne | 16 novembre 2017 |
- Andrieu N, Easton DF, Chang-Claude J, et al. 2006. Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators' Group, J. Clin. Oncol. 24: 3361–3366. [CrossRef] [PubMed] [Google Scholar]
- Antoniou A, Pharoah PD, Narod S, et al. 2003. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies, Am. J. Hum. Genet. 72: 1117–1130. [CrossRef] [Google Scholar]
- Barcellos-Hoff MH, Lyden D, Wang TC. 2013. The evolution of the cancer niche during multistage carcinogenesis, Nat. Rev. Cancer 13: 511–518. [CrossRef] [PubMed] [Google Scholar]
- Berrington de Gonzalez A, Reeves G. 2005. Mammographic screening before age 50 years in the UK: comparison of the radiation risks with the mortality benefits, Br. J. Cancer 93: 590–596. [CrossRef] [PubMed] [Google Scholar]
- Berrington de Gonzalez A, Berg CD, Visvanathan K, Robson M. 2009. Estimated risk of radiation-induced breast cancer from mammographic screening for young BRCA mutation carriers, J. Natl. Cancer Inst. 101: 205–209. [Google Scholar]
- Bodgi L, Foray N. 2016. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model, Int. J. Radiat. Biol. 92: 117–131. [CrossRef] [PubMed] [Google Scholar]
- Bourguignon M, Bérard P, Bertho JM, Farah J, Mercat C. 2017. What's next in Radioprotection? Radioprotection 52: 21–28. [CrossRef] [EDP Sciences] [Google Scholar]
- Brenner DJ, Doll R, Goodhead DT, et al. 2003. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know, Proc. Natl. Acad. Sci. U.S.A 100: 13761–13766. [Google Scholar]
- Colin C, Foray N. 2012. DNA damage induced by mammography in high family risk patients: only one single view in screening, Breast 21: 409–410. [CrossRef] [PubMed] [Google Scholar]
- Colin C, Devic C, Noel A, et al. 2011a. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells, Int. J. Radiat. Biol. 87: 1103–1112. [CrossRef] [PubMed] [Google Scholar]
- Colin C, Granzotto A, Devic C, Viau M, Maalouf M, Vogin G, Joubert A, Thomas C, Foray N. 2011b. MRE11 and H2AX biomarkers in the response to low-dose exposure: Balance between individual susceptibility to radiosensitivity and to genomic instability, Int. J. Low Radiation 8: 96–106. [CrossRef] [Google Scholar]
- Colin C, de Vathaire F, Noel A, et al. 2012. Updated relevance of mammographic screening modalities in women previously treated with chest irradiation for Hodgkin disease, Radiology 265: 669–676. [CrossRef] [PubMed] [Google Scholar]
- Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. 2000. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study, Spine (Phila Pa 1976) 25: 2052–2063. [CrossRef] [PubMed] [Google Scholar]
- Foray N, Colin C, Bourguignon M. 2012. 100 years of individual radiosensitivity: how we have forgotten the evidence, Radiology 264: 627–631. [CrossRef] [PubMed] [Google Scholar]
- Foray N, Bourguignon M, Hamada N. 2016. Individual response to ionizing radiation, Mutat. Res. 770: 369–386. [CrossRef] [PubMed] [Google Scholar]
- Gaillard H, Garcia-Muse T, Aguilera A. 2015. Replication stress and cancer, Nat. Rev. Cancer 15: 276–289. [CrossRef] [PubMed] [Google Scholar]
- Geisel D, Heverhagen JT, Kalinowski M, Wagner HJ. 2008. DNA double-strand breaks after percutaneous transluminal angioplasty, Radiology 248: 852–859. [CrossRef] [PubMed] [Google Scholar]
- Giannakeas V, Lubinski J, Gronwald J, et al. 2014. Mammography screening and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a prospective study, Breast Cancer Res. Treat. 147: 113–118. [CrossRef] [PubMed] [Google Scholar]
- Goldfrank D, Chuai S, Bernstein JL, et al. 2006. Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2, Cancer Epidemiol. Biomarkers Prev. 15: 2311–2313. [Google Scholar]
- Gronwald J, Pijpe A, Byrski T, et al. 2008. Early radiation exposures and BRCA1-associated breast cancer in young women from Poland, Breast Cancer Res. Treat. 112: 581–584. [CrossRef] [PubMed] [Google Scholar]
- Grudzenski S, Raths A, Conrad S, Rube CE, Lobrich M. 2010. Inducible response required for repair of low-dose radiation damage in human fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 107: 14205–14210. [CrossRef] [Google Scholar]
- Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation, Cell 144: 646–674 [CrossRef] [PubMed] [Google Scholar]
- Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS, 3rd, Boice JD, Jr. 1989. Breast cancer in women with scoliosis exposed to multiple diagnostic X-rays, J. Natl. Cancer Inst. 81: 1307–1312. [Google Scholar]
- Howe GR, McLaughlin J. 1996. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study, Radiat. Res. 145: 694–707. [CrossRef] [PubMed] [Google Scholar]
- Jansen-van der Weide MC, Greuter MJ, Jansen L, Oosterwijk JC, Pijnappel RM, de Bock GH. 2010. Exposure to low-dose radiation and the risk of breast cancer among women with a familial or genetic predisposition: a meta-analysis, Eur. Radiol. 20: 2547–2556. [CrossRef] [PubMed] [Google Scholar]
- John EM, McGuire V, Thomas D, et al. 2013. Diagnostic chest X-rays and breast cancer risk before age 50 years for BRCA1 and BRCA2 mutation carriers, Cancer Epidemiol. Biomarkers Prev. 22: 1547–1556. [Google Scholar]
- Kuchenbaecker KB, Hopper JL, Barnes DR, et al. 2017. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers, JAMA 317: 2402–2416. [CrossRef] [PubMed] [Google Scholar]
- Kuefner MA, Grudzenski S, Schwab SA, et al. 2009. DNA double-strand breaks and their repair in blood lymphocytes of patients undergoing angiographic procedures, Invest. Radiol. 44: 440–446. [CrossRef] [PubMed] [Google Scholar]
- Kuefner MA, Grudzenski S, Hamann J, et al. 2010. Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography, Eur. Radiol. 20: 2917–2924. [CrossRef] [PubMed] [Google Scholar]
- Land CE. 1980. Estimating cancer risks from low doses of ionizing radiation, Science 209: 1197–1203. [CrossRef] [PubMed] [Google Scholar]
- Lecarpentier J, Nogues C, Mouret-Fourme E, et al. 2011. Variation in breast cancer risk with mutation position, smoking, alcohol, and chest X-ray history, in the French National BRCA1/2 carrier cohort (GENEPSO), Breast Cancer Res. Treat. 130: 927–938. [CrossRef] [PubMed] [Google Scholar]
- Lobrich M, Jeggo PA. 2005. The two edges of the ATM sword: co-operation between repair and checkpoint functions, Radiother. Oncol. 76: 112–118. [CrossRef] [PubMed] [Google Scholar]
- Lobrich M, Rief N, Kuhne M, et al. 2005. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations, Proc. Natl. Acad. Sci. U.S.A. 102: 8984–8989. [CrossRef] [Google Scholar]
- Lowry KP, Lee JM, Kong CY, et al. 2012. Annual screening strategies in BRCA1 and BRCA2 gene mutation carriers: a comparative effectiveness analysis, Cancer 118: 2021–2030. [CrossRef] [PubMed] [Google Scholar]
- Mole RH. 1978. The sensitivity of the human breast to cancer induction by ionizing radiation, Br. J. Radiol. 51: 401–405. [CrossRef] [PubMed] [Google Scholar]
- Narod SA, Lubinski J, Ghadirian P, et al. 2006. Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study, Lancet Oncol. 7: 402–406. [CrossRef] [PubMed] [Google Scholar]
- Obdeijn IM, Heijnsdijk EA, Hunink MG, Tilanus-Linthorst MM, de Koning HJ. 2016. Mammographic screening in BRCA1 mutation carriers postponed until age 40: evaluation of benefits, costs and radiation risks using models, Eur. J. Cancer 63: 135–142. [CrossRef] [PubMed] [Google Scholar]
- Phi XA, Saadatmand S, De Bock GH, et al. 2016. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis, Br. J. Cancer 114: 631–637. [CrossRef] [PubMed] [Google Scholar]
- Pijpe A, Andrieu N, Easton DF, et al. 2012. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK), BMJ 345: e5660. [Google Scholar]
- Powell SN, Kachnic LA. 2003. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation, Oncogene 22: 5784–5791. [CrossRef] [PubMed] [Google Scholar]
- Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD, Jr. 2002. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts, Radiat. Res. 158: 220–235. [CrossRef] [PubMed] [Google Scholar]
- Ronckers CM, Erdmann CA, Land CE. 2005. Radiation and breast cancer: a review of current evidence, Breast Cancer Res. 7: 21–32. [CrossRef] [PubMed] [Google Scholar]
- Rothkamm K, Lobrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses, Proc. Natl. Acad. Sci. U.S.A. 100: 5057–5062. [CrossRef] [Google Scholar]
- Sardanelli F, Podo F. 2007. Breast MR imaging in women at high-risk of breast cancer. Is something changing in early breast cancer detection? Eur. Radiol. 17: 873–887. [CrossRef] [PubMed] [Google Scholar]
- Sardanelli F, Boetes C, Borisch B, et al. 2010. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group, Eur. J. Cancer 46: 1296–1316. [CrossRef] [PubMed] [Google Scholar]
- Saslow D, Boetes C, Burke W, et al. 2007. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography, CA Cancer J. Clin. 57: 75–89. [Google Scholar]
- Slonina D, Biesaga B, Urbanski K, Kojs Z, Waligorski M. 2006. Evidence of low-dose hyper-radiosensitivity in normal cells of cervix cancer patients? Radiat. Prot. Dosimetry 122: 282–284. [CrossRef] [PubMed] [Google Scholar]
- Slonina D, Biesaga B, Urbanski K, Kojs Z. 2007. Low-dose radiation response of primary keratinocytes and fibroblasts from patients with cervix cancer, Radiat. Res. 167: 251–259. [CrossRef] [PubMed] [Google Scholar]
- Tsai KK, Chuang EY, Little JB, Yuan ZM. 2005. Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment, Cancer Res. 65: 6734–6744. [CrossRef] [Google Scholar]
- Venkitaraman AR. 2002. Cancer susceptibility and the functions of BRCA1 and BRCA2, Cell 108: 171–182. [CrossRef] [PubMed] [Google Scholar]
- Viau M, Perez AF, Bodgi L, et al. 2016. Repeated radiation dose effect and DNA repair: Importance of the individual factor and the time interval between the doses, Cancer Radiother. 20: 217–225. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.