Accès gratuit
Numéro
Radioprotection
Volume 49, Numéro 2, Avril-Juin 2014
Page(s) 115 - 121
Section Articles
DOI https://doi.org/10.1051/radiopro/2013090
Publié en ligne 19 février 2014
  • Ashok K., Sukhpal S., Gurmel S.M., Kulwant S.T. (2007) Studies on Effective Atomic Numbers and Electron Densities in Some Commonly Used Solvents, Nucl. Sci. Eng. 155, 102-108. [Google Scholar]
  • Berger M.J., Hubbell J.H., Seltzer S.M., Chang J., Coursey J.S., Sukumar R., Zucker D.S., Olsen K. (2010) XCOM: photon cross sections database, NIST standard reference database (XGAM), http://www.nist.gov/pml/data/xcom/index.cfm. [Google Scholar]
  • Demir D., Tursucu A., Oznuluer T. (2012) Studies on mass attenuation coefficient, effective atomic number and electron densitiy of some vitamins, Radiat. Environ. Biophys. DOI: 10.1007/s00411-012-0427-8. [Google Scholar]
  • Elias S., Zainal A.S., Anuar A., Husin W. (1983) Determination of effective atomic number of rubber, Pertanika 6, 95-98. [Google Scholar]
  • Ferreira C.C., Ximenes R.E., Garcia C.A.B., Viera J.W., Maia A.F. (2010) Total mass attenuation coefficient evaluation of ten materials commonly used to simulate human tissue, J. Phys.: Conf. Ser. 249, 1-5. [Google Scholar]
  • Gerward L., Guilbert N., Jensen K.B., Levring H. (2004) WinXCom – a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71, 653-654. [Google Scholar]
  • Hubbell J.H. (1982) Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV, Int. J. Appl. Radiat. Isot. 33, 1269-1290. [CrossRef] [Google Scholar]
  • ICRU (1989) International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurement, Report No. 44, Bethesda, MD. [Google Scholar]
  • Jackson D.F., Hawkers D.J. (1981) X-ray attenuation coefficient of the elements and mixtures, Phys. Rep. 70, 169-233. [CrossRef] [Google Scholar]
  • Kiran T.K., Venkata K.R. (1997) Effective atomic numbers for materials of dosimetric interest, Radiat. Phys. Chem. 50 (6), 545-553. [CrossRef] [Google Scholar]
  • Koç N., Özyol H. (2000) Z-dependence of partial and total photon interactions in some biological samples, Radiat. Phys. Chem. 59, 339-345. [CrossRef] [Google Scholar]
  • Kucuk N., Cakir M., Isitman N.A. (2013) Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Prot. Dosim. 153 (1), 127-134. [CrossRef] [Google Scholar]
  • Kulwant S., Gagandeep K., Sandhu G.K., Lark B.S. (2001) Interaction of photons with some solutions, Radiat. Phys. Chem. 61, 537-540. [CrossRef] [Google Scholar]
  • Manjunathguru V., Umesh T.K. (2006) Effective atomic number and electron densities of some biologically important compounds containing H, C, N and O in energy range 145-1330 keV, J. Phys. B 39, 3969-3981. [CrossRef] [Google Scholar]
  • Manohara S.R., Hanagodimath S.M., Thind K.S., Gerward L. (2008) On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Meth. Phys. Res. B 266, 3906-3912. [CrossRef] [Google Scholar]
  • Michael E.W. et al. (2013) Atomic weight of elements 2011 (IUPAC Technical Report), Pure Appl. Chem. 85 (05), 1047-1078. [Google Scholar]
  • Murat K., Yuksel O. (2011) Energy absorption and exposure buildup factors for some polymer and tissue substitute materials: photon energy, penetration depth and chemical composition dependency, J. Radiol. Prot. 31, 117-128. [CrossRef] [PubMed] [Google Scholar]
  • Nowotny R. (1998) XMuDat: Photon attenuation data on PC. IAEA-NDS-195, Vienna, Austria. Available on http://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm. [Google Scholar]
  • Parthsaradhi K., Esposito A., Pelliccioni M. (1992) Photon attenuation coefficients in tissue equivalent compound, Appl. Radiat. Isotopes 43 (12), 1481-1484. [CrossRef] [Google Scholar]
  • Prasanna K.S., Manjunathguru V., Umesh T.K. (2010) Effective atomic numbers of some H-, C-, O- based composite materials derived from differential incoherent scattering cross section, Pramana 74 (4), 555-562. [CrossRef] [Google Scholar]
  • Shivalinge G., Krishnaveni S., Ramakrishna G. (2005) Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV, Nucl. Instr. Meth. Phys. Res. B 239 (4), 361-369. [CrossRef] [Google Scholar]
  • Shivaramu R., Vijayakumar L., Rajasekaran N.R. (2001) Effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest, Radiat. Phys. Chem. 62, 371-377. [CrossRef] [Google Scholar]
  • Singh V.P., Badiger N.M. (2012) Effective atomic numbers, electron densities and tissue equivalence of some gases and mixtures for dosimetry of radiation detectors, Nuclear Technology & Radiation Protection 27 (2), 117-124. [CrossRef] [Google Scholar]
  • Singh V.P., Badiger N.M. (2013) Study of effective atomic numbers and electron densities, kerma of alcohols: phantom and human organ tissue substitues, Nuclear Technology & Radiation Protection, 28 (2), 137-145 [CrossRef] [Google Scholar]
  • Taylor M.L., Smith R.L., Dossing F., Franich R.D. (2012) Robust calculation of effective atomic numbers: The Auto-Zeff software, Med. Phys. 39, 1769-1778. [CrossRef] [PubMed] [Google Scholar]
  • Tejbir S., Naresh K., Parjit S.S. (2009) Chemical composition dependency of exposure buildup factors for some polymers, Ann. Nucl. Eng. 36, 114-120. [Google Scholar]
  • Tejbir S., Rajni Updesh K., Parjit S.S. (2010) Photon energy absorption parameters for some polymers, Ann. Nucl. Eng. 37, 422-427. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.