Accès gratuit
Numéro
Radioprotection
Volume 48, Numéro 1, Janvier-Mars 2013
Page(s) 63 - 78
Section Articles
DOI https://doi.org/10.1051/radiopro/2012024
Publié en ligne 6 décembre 2012
  • Akinao S. (2002) Calculation of Gamma-Ray Buildup Factors up to depths of 100 mfp by the method of Invariant Embedding, (I) Analysis of accuracy and comparison with other data, Nucl. Sci. Tech. 39, 477-486. [Google Scholar]
  • Allard D.J., Nazarali A.M., Chabot C.E. (1992) The N-16 Gamma Radiation Response of Geiger-Müller Tubes, Proc. Int. Cong. of the International Radiation Protection Association (IRPA8), 17-22 May, pp. 652-655, Montreal, Canada. [Google Scholar]
  • ANSI (1991) American National Standard Institute, Gamma-ray attenuation coefficients and buildup factor for engineering materials, Report ANSI/ANS/6.4.3, American Nuclear Society, La Grange Park, Illinois. [Google Scholar]
  • Berger M.J., Hubbell J.H. (1987/1999) XCOM, NIST, Gaithersburg, MD 20, 899, USA. [Google Scholar]
  • Chilton A.B., Eisenhauer C.M., Simmons G.L. (1980) Photon point source buildup factors for air, water and iron, Nucl. Sci. Eng. 73, 97-107. [Google Scholar]
  • Gelward L., Guilbert N., Jensen K.B., Levring H. (2001) X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem. 60, 23-24. [CrossRef] [Google Scholar]
  • Gelward L., Guilbert N., Jensen K.B., Levring H. (2004) WinXcom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71, 653-654. [Google Scholar]
  • Gopinath D.V., Samthanam K. (1971) Radiation transport in one dimensional finite System-Part I. Development in Anisotropic Source Flux Technique, Nucl. Sci. Eng. 43, 186-196. [Google Scholar]
  • Haridas G.N., Nayak M.K., Dev V., Thakkar K.K., Sarkar P.K., Sharma D.N. (2006) Dose build up correction for radiation monitors in high-energy bremsstrahlung photon in radiation fields, Radiat. Prot. Dosim. 118, 233-237. [Google Scholar]
  • Harima Y. (1983) An approximation of gamma buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83, 299-309. [Google Scholar]
  • Harima Y. (1993) An Historical review and current status of buildup factor calculations and application, Radiat. Phys. Chem. 41, 631-659. [CrossRef] [Google Scholar]
  • Harima Y., Sakamoto Y., Tanka S., Kawai M. (1986) Validity of geometric progression formula in approximating gamma ray buildup factor, Nucl. Sci. Eng. 94, 24-35. [Google Scholar]
  • Knoll G.F. (2000) Ionization Camber, Radiation Detection and Measurement, 3rd edition, pp. 129-217, John Wiley & Sons, New York. [Google Scholar]
  • Luis A.D. (2009) Update to ANSI/ANS-6.4.3-1991 for low-Z materials and compound materials and review of particle transport theory, UNLV, Las Vegas, NV 89154. [Google Scholar]
  • Maron M.J. (1987) Numerical analysis: A Practical approach, Macmillan, New York. [Google Scholar]
  • Manohara S.R., Hanagodimath S.M., Gerward L. (2010) Energy absorption buildup factors for thermoluminescent dosimetic materials and their tissue equivalent, Radiat. Phys. Chem. 79, 575-582. [CrossRef] [Google Scholar]
  • Murat K., Yuksel O. (2011) Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence, J. Radiol. Prot. 31, 117-128. [CrossRef] [PubMed] [Google Scholar]
  • Murat K., Bekir D., Metin I., Neslihan E., Yuksel O. (2011) Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis, Appl. Radiat. Isotopes 69, 381-388. [CrossRef] [Google Scholar]
  • Nelson W.R., Hirayama H., Rogers D.W.O. (1985) EGS4 code system, Stanford Linear Accelerator Centre, 265, Stanford, California. [Google Scholar]
  • Raza S., Avila R. (2005) Calculation of immersion doses from external exposure to a plume of radioactive material, Health Phys. 89, 247-254. [CrossRef] [PubMed] [Google Scholar]
  • Sakamoto Y., Tanaka S. (1988) Interpolation of gamma ray buildup factors for point isotropic source with respect to atomic number, Nucl. Sci. Eng. 100, 33-42. [Google Scholar]
  • Simmons G.L. (1973) An adjoint gamma-ray moments computer code ADJMOM-I, NBS Technical Note 748, National Bureau of Standards. [Google Scholar]
  • Shimizu A. (2002) Calculation of gamma-ray buildup factors upto depth of 100 mfp by method of invariant embedding, (I) analysis of accuracy and comparison with other data, J. Nucl. Sci. Technol. 39, 477. [Google Scholar]
  • Shimizu A., Onda T., Sakamoto Y. (2004) Calculation of gamma-ray buildup facor upto depth of 100 mfp by the method of invariant embedding, (III) generation of improved data set, J. Nucl. Sci. Technol. 41, 413-24. [Google Scholar]
  • Singh V.P., Badiger N.M. (2011) Study of effective atomic number and electron densities of some gases of radiation detectors, Proc. National Symposium on Nuclear Energy and Health Care (NEHCA-2011), D. Y. Patil University, Kolhapur, India, 22-24 Oct., OP-1, pp. 47. [Google Scholar]
  • Singh V.P., Badiger N.M. (2012a) Effective atomic numbers, electron densities and tissue equivalence of some gases and mixtures for dosemetry in radiation detectors, Nucl. Technol. Radiat. Prot. 27 (2), 117-124. [Google Scholar]
  • Singh V.P., Badiger N.M. (2012b) Comprehensive study of energy absorption and exposure buildup factor for concrete shielding in photon energy range 0.015-15 MeV upto 40 mfp penetration depth: dependency of density, chemical element, photon energy, Int. J. Nucl. Energy Sci. Technol. 7 (1), 75-99. [Google Scholar]
  • Takeuchi K., Tanaka S. (1984) PALLAS-ID (VII). A code for direct integration of transport equation in one-dimensional plane and spherical geometries, JAERI-M 84, 214. [Google Scholar]
  • Takeuchi K., Tanaka S. (1985) Point isotropic buildup factor of gamma rays, including bremsstrahlung and annihilation radiation for water, concrete, iron and lead, Nucl. Sci. Eng. 90, 158-164. [Google Scholar]
  • Takeuchi K., Tanaka S. (1986) Detailed investigation of the buildup factors and spectra for point isotropic gamma ray sources in vicinity of the k edge in lead, Nucl. Sci. Eng. 93, 376-385. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.