Free Access
Volume 48, Number 1, Janvier-Mars 2013
Page(s) 63 - 78
Section Articles
Published online 06 December 2012
  • Akinao S. (2002) Calculation of Gamma-Ray Buildup Factors up to depths of 100 mfp by the method of Invariant Embedding, (I) Analysis of accuracy and comparison with other data, Nucl. Sci. Tech. 39, 477-486. [Google Scholar]
  • Allard D.J., Nazarali A.M., Chabot C.E. (1992) The N-16 Gamma Radiation Response of Geiger-Müller Tubes, Proc. Int. Cong. of the International Radiation Protection Association (IRPA8), 17-22 May, pp. 652-655, Montreal, Canada. [Google Scholar]
  • ANSI (1991) American National Standard Institute, Gamma-ray attenuation coefficients and buildup factor for engineering materials, Report ANSI/ANS/6.4.3, American Nuclear Society, La Grange Park, Illinois. [Google Scholar]
  • Berger M.J., Hubbell J.H. (1987/1999) XCOM, NIST, Gaithersburg, MD 20, 899, USA. [Google Scholar]
  • Chilton A.B., Eisenhauer C.M., Simmons G.L. (1980) Photon point source buildup factors for air, water and iron, Nucl. Sci. Eng. 73, 97-107. [Google Scholar]
  • Gelward L., Guilbert N., Jensen K.B., Levring H. (2001) X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem. 60, 23-24. [CrossRef] [Google Scholar]
  • Gelward L., Guilbert N., Jensen K.B., Levring H. (2004) WinXcom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71, 653-654. [Google Scholar]
  • Gopinath D.V., Samthanam K. (1971) Radiation transport in one dimensional finite System-Part I. Development in Anisotropic Source Flux Technique, Nucl. Sci. Eng. 43, 186-196. [Google Scholar]
  • Haridas G.N., Nayak M.K., Dev V., Thakkar K.K., Sarkar P.K., Sharma D.N. (2006) Dose build up correction for radiation monitors in high-energy bremsstrahlung photon in radiation fields, Radiat. Prot. Dosim. 118, 233-237. [Google Scholar]
  • Harima Y. (1983) An approximation of gamma buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83, 299-309. [Google Scholar]
  • Harima Y. (1993) An Historical review and current status of buildup factor calculations and application, Radiat. Phys. Chem. 41, 631-659. [CrossRef] [Google Scholar]
  • Harima Y., Sakamoto Y., Tanka S., Kawai M. (1986) Validity of geometric progression formula in approximating gamma ray buildup factor, Nucl. Sci. Eng. 94, 24-35. [Google Scholar]
  • Knoll G.F. (2000) Ionization Camber, Radiation Detection and Measurement, 3rd edition, pp. 129-217, John Wiley & Sons, New York. [Google Scholar]
  • Luis A.D. (2009) Update to ANSI/ANS-6.4.3-1991 for low-Z materials and compound materials and review of particle transport theory, UNLV, Las Vegas, NV 89154. [Google Scholar]
  • Maron M.J. (1987) Numerical analysis: A Practical approach, Macmillan, New York. [Google Scholar]
  • Manohara S.R., Hanagodimath S.M., Gerward L. (2010) Energy absorption buildup factors for thermoluminescent dosimetic materials and their tissue equivalent, Radiat. Phys. Chem. 79, 575-582. [CrossRef] [Google Scholar]
  • Murat K., Yuksel O. (2011) Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence, J. Radiol. Prot. 31, 117-128. [CrossRef] [PubMed] [Google Scholar]
  • Murat K., Bekir D., Metin I., Neslihan E., Yuksel O. (2011) Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis, Appl. Radiat. Isotopes 69, 381-388. [CrossRef] [Google Scholar]
  • Nelson W.R., Hirayama H., Rogers D.W.O. (1985) EGS4 code system, Stanford Linear Accelerator Centre, 265, Stanford, California. [Google Scholar]
  • Raza S., Avila R. (2005) Calculation of immersion doses from external exposure to a plume of radioactive material, Health Phys. 89, 247-254. [CrossRef] [PubMed] [Google Scholar]
  • Sakamoto Y., Tanaka S. (1988) Interpolation of gamma ray buildup factors for point isotropic source with respect to atomic number, Nucl. Sci. Eng. 100, 33-42. [Google Scholar]
  • Simmons G.L. (1973) An adjoint gamma-ray moments computer code ADJMOM-I, NBS Technical Note 748, National Bureau of Standards. [Google Scholar]
  • Shimizu A. (2002) Calculation of gamma-ray buildup factors upto depth of 100 mfp by method of invariant embedding, (I) analysis of accuracy and comparison with other data, J. Nucl. Sci. Technol. 39, 477. [Google Scholar]
  • Shimizu A., Onda T., Sakamoto Y. (2004) Calculation of gamma-ray buildup facor upto depth of 100 mfp by the method of invariant embedding, (III) generation of improved data set, J. Nucl. Sci. Technol. 41, 413-24. [Google Scholar]
  • Singh V.P., Badiger N.M. (2011) Study of effective atomic number and electron densities of some gases of radiation detectors, Proc. National Symposium on Nuclear Energy and Health Care (NEHCA-2011), D. Y. Patil University, Kolhapur, India, 22-24 Oct., OP-1, pp. 47. [Google Scholar]
  • Singh V.P., Badiger N.M. (2012a) Effective atomic numbers, electron densities and tissue equivalence of some gases and mixtures for dosemetry in radiation detectors, Nucl. Technol. Radiat. Prot. 27 (2), 117-124. [Google Scholar]
  • Singh V.P., Badiger N.M. (2012b) Comprehensive study of energy absorption and exposure buildup factor for concrete shielding in photon energy range 0.015-15 MeV upto 40 mfp penetration depth: dependency of density, chemical element, photon energy, Int. J. Nucl. Energy Sci. Technol. 7 (1), 75-99. [Google Scholar]
  • Takeuchi K., Tanaka S. (1984) PALLAS-ID (VII). A code for direct integration of transport equation in one-dimensional plane and spherical geometries, JAERI-M 84, 214. [Google Scholar]
  • Takeuchi K., Tanaka S. (1985) Point isotropic buildup factor of gamma rays, including bremsstrahlung and annihilation radiation for water, concrete, iron and lead, Nucl. Sci. Eng. 90, 158-164. [Google Scholar]
  • Takeuchi K., Tanaka S. (1986) Detailed investigation of the buildup factors and spectra for point isotropic gamma ray sources in vicinity of the k edge in lead, Nucl. Sci. Eng. 93, 376-385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.