Accès gratuit
Volume 45, Numéro 5, 2010
Enhancing nuclear and radiological emergency management and rehabilitation:
Key Results of the EURANOS European Project
Page(s) S113 - S122
Section Articles
Publié en ligne 16 septembre 2010
  • Gering F., Hübner S., Müller H. (2003) User Guide for the Aquatic Food Chain and Dose Module FDMA in RODOS PV4.0, RODOS(WG3)-TN(99) 10, FZK Karlsruhe, 49 p. [Google Scholar]
  • Ievdin I., Trybushnyi D., Zheleznyak M., Raskob W. (2010) RODOS re-engineering: aims and implementation details, Radioprotection 45, S181-S189. [CrossRef] [EDP Sciences] [Google Scholar]
  • Johannessen O.M., Volkov V.A., Pettersson L.M., Maderich V.S., Zheleznyak M.J., Gao Y., Bobylev L.P., Stepanov A., Neelov V., Tishkov V.P., Nielsen S.P. (2009) Radioactivity and pollution in the Nordic Seas and Arctic Region: observations, modelling and simulations. Springer, Series: Springer Praxis Books, ISBN: 978-3-540-24232-1. [Google Scholar]
  • Kolomeev M., Madsen H. (2002) Description of RETRACE: A new catchment model of the hydrological dispersion module in the RODOS system RODOS(RA5)-TN(01)-09, Report of FP5 DAONEM Project FIKR-CT-2000-00025, FZK Karlsuhe. – 32 p. [Google Scholar]
  • Lepicard S., Heling R., Maderich V. (2004) POSEIDON/RODOS model for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North seas, J. Environ. Radioact. 72, 153-161. [CrossRef] [PubMed] [Google Scholar]
  • Margvelashvily N., Maderich V., Zheleznyak M. (1997) THREETOX – a computer code to simulate three-dimensional dispersion of radionuclides in stratified water bodies, Radiat. Prot. Dosim. 73, 177-180. [Google Scholar]
  • Monte L. (1996) Analysis of models assessing the radionuclide migration from catchments to water bodies, Health Phys. 70, 227-237. [CrossRef] [PubMed] [Google Scholar]
  • Monte L., Periañez R., Kivva S., Laptev G., Angeli G., Barros H., Zheleznyak M. (2006) Assessment of state-of-the-art models for predicting the remobilisation of radionuclides following the flooding of heavily contaminated areas: the case of Pripyat River floodplain, J. Environ. Radioactiv. 88, 267-288. [Google Scholar]
  • Onishi Y., Voitsekhovich O., Zheleznyak M. (Eds.) (2006) Chernobyl – What Have We Learned? : The Successes and Failures to Mitigate Water Contamination Over 20 Years, Springer, ISBN: 978-1-4020-5348-1. [Google Scholar]
  • Raskob W., Heling R., Zheleznyak M. (2004) Is there a need for hydrological modelling in Decision Support Systems for nuclear emergencies? Radiat. Prot. Dosim. 109, 111-114. [CrossRef] [Google Scholar]
  • Zheleznyak M., Heling R., Raskob W. (2002) Hydrological dispersion module of the decision support system RODOS, Radioprotection 37 (C1), 683-688. [Google Scholar]
  • Zheleznyak M., Demchenko R., Khursin S., Kuzmenko Yu., Tkalich P., Vitjuk N. (1992) Mathematical modeling of radionuclide dispersion in the Pripyat-Dnieper aquatic system after the Chernobyl accident, Sci. Tot. Environ. 112, 89-114. [Google Scholar]
  • Zheleznyak M.J., Tkalich P.V., Lyashenko G.B., Marinets A.V. (1993) Aquatic dispersion model -first approaches to integration into the E decision support system based on post-Chernobyl experience, Radiat. Prot. Dosim. 50, 235-242. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.