Free Access
Issue
Radioprotection
Volume 45, Number 5, 2010
Enhancing nuclear and radiological emergency management and rehabilitation:
Key Results of the EURANOS European Project
Page(s) S113 - S122
Section Articles
DOI https://doi.org/10.1051/radiopro/2010044
Published online 16 September 2010
  • Gering F., Hübner S., Müller H. (2003) User Guide for the Aquatic Food Chain and Dose Module FDMA in RODOS PV4.0, RODOS(WG3)-TN(99) 10, FZK Karlsruhe, 49 p. [Google Scholar]
  • Ievdin I., Trybushnyi D., Zheleznyak M., Raskob W. (2010) RODOS re-engineering: aims and implementation details, Radioprotection 45, S181-S189. [CrossRef] [EDP Sciences] [Google Scholar]
  • Johannessen O.M., Volkov V.A., Pettersson L.M., Maderich V.S., Zheleznyak M.J., Gao Y., Bobylev L.P., Stepanov A., Neelov V., Tishkov V.P., Nielsen S.P. (2009) Radioactivity and pollution in the Nordic Seas and Arctic Region: observations, modelling and simulations. Springer, Series: Springer Praxis Books, ISBN: 978-3-540-24232-1. [Google Scholar]
  • Kolomeev M., Madsen H. (2002) Description of RETRACE: A new catchment model of the hydrological dispersion module in the RODOS system RODOS(RA5)-TN(01)-09, Report of FP5 DAONEM Project FIKR-CT-2000-00025, FZK Karlsuhe. – 32 p. [Google Scholar]
  • Lepicard S., Heling R., Maderich V. (2004) POSEIDON/RODOS model for radiological assessment of marine environment after accidental releases: application to coastal areas of the Baltic, Black and North seas, J. Environ. Radioact. 72, 153-161. [CrossRef] [PubMed] [Google Scholar]
  • Margvelashvily N., Maderich V., Zheleznyak M. (1997) THREETOX – a computer code to simulate three-dimensional dispersion of radionuclides in stratified water bodies, Radiat. Prot. Dosim. 73, 177-180. [Google Scholar]
  • Monte L. (1996) Analysis of models assessing the radionuclide migration from catchments to water bodies, Health Phys. 70, 227-237. [CrossRef] [PubMed] [Google Scholar]
  • Monte L., Periañez R., Kivva S., Laptev G., Angeli G., Barros H., Zheleznyak M. (2006) Assessment of state-of-the-art models for predicting the remobilisation of radionuclides following the flooding of heavily contaminated areas: the case of Pripyat River floodplain, J. Environ. Radioactiv. 88, 267-288. [CrossRef] [PubMed] [Google Scholar]
  • Onishi Y., Voitsekhovich O., Zheleznyak M. (Eds.) (2006) Chernobyl – What Have We Learned? : The Successes and Failures to Mitigate Water Contamination Over 20 Years, Springer, ISBN: 978-1-4020-5348-1. [Google Scholar]
  • Raskob W., Heling R., Zheleznyak M. (2004) Is there a need for hydrological modelling in Decision Support Systems for nuclear emergencies? Radiat. Prot. Dosim. 109, 111-114. [CrossRef] [Google Scholar]
  • Zheleznyak M., Heling R., Raskob W. (2002) Hydrological dispersion module of the decision support system RODOS, Radioprotection 37 (C1), 683-688. [Google Scholar]
  • Zheleznyak M., Demchenko R., Khursin S., Kuzmenko Yu., Tkalich P., Vitjuk N. (1992) Mathematical modeling of radionuclide dispersion in the Pripyat-Dnieper aquatic system after the Chernobyl accident, Sci. Tot. Environ. 112, 89-114. [CrossRef] [PubMed] [Google Scholar]
  • Zheleznyak M.J., Tkalich P.V., Lyashenko G.B., Marinets A.V. (1993) Aquatic dispersion model -first approaches to integration into the E decision support system based on post-Chernobyl experience, Radiat. Prot. Dosim. 50, 235-242. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.