Accès gratuit
Volume 45, Numéro 1, Janvier-Mars 2010
Page(s) 67 - 82
Section Articles
Publié en ligne 8 mars 2010
  • Aamodt A. (2004) Knowledge-Intensive Case-Based Reasoning and Sustained Learning, in Proceedings of the 9th European Conference on Artificial Intelligence, ECCBR’04, Lecture Notes in Artificial Intelligence, Springer, pp. 1–15. [Google Scholar]
  • Broggio D., Zhang B., de Carlan L., Desbée A., Lamart S., le Guen B., Bailloeuil C.Franck D. (2009) Analytical and Monte Carlo assessment of activity and local dose after a wound contamination by activation products, Health Phys. 96, 155–163. [CrossRef] [PubMed] [Google Scholar]
  • Caon M., Bibbo G., Pattison J. (1999) An EGS-4ready tomographic computational model of 14-year-old female torso for calculating organ doses from CT examinations, Phys. Med. Biol. 44, 2213–2225. [CrossRef] [PubMed] [Google Scholar]
  • Clairand I. (1999) Développement de nouveaux modèles physiques dédiés à la dosimétrie interne par l’utilisation du code de Monte Carlo EGS, Thèse de l’Université Paul Sabatier, Toulouse. [Google Scholar]
  • Clairand I., Bouchet L.G., Ricard M., Durigon M., Di Paola M.Aubert B. (2000) Improvement of internal dose calculations using mathematical models of different adult heights, Phys. Med. Biol. 45, 2771–2785. [CrossRef] [PubMed] [Google Scholar]
  • Clairand I., Huet C., Trompier F.Bottollier-Depois J.-F. (2008) Physical dosimetric reconstruction of a radiological accident due to gammagraphy equipment that occurred in Dakar and Abidjan in summer 2006, Rad. Measur. 43, 698–703. [CrossRef] [Google Scholar]
  • Cristy M., Eckerman K.F. (1987) Specific absorbed fractions of energy at various ages from internal photons sources, ORNL Report/TM-8381, Oak Ridge, Oak Ridge National Laboratory. [Google Scholar]
  • de Carlan L., Aubineau-Lanièce I., Lemosquet A., Borissov N., Jourdain J.R., Jeanbourquin D., Le Guen B.Franck D. (2003) Application of new imaging and calculation techniques to activity and dose assessment in the case of a 106Ru contaminated wound, Rad. Prot. Dosim. 105, 219–223. [Google Scholar]
  • Dimbylow P.J. (1998) Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body, Phys. Med. Biol. 43, 221–230. [CrossRef] [PubMed] [Google Scholar]
  • Easterley C.E., Allgood G., Eckerman K.F., Knee B., Maston M., MacNeilly G., Munro J., Munro N., Toerite R., Van Hoy B. (1998) The virtual human: a diagnostic tool for human studies and health effects in the 21st century, SPIE Int. Soc. Opt. Engineer. 3253, 150–154. [Google Scholar]
  • Fusch B., Lieber J., Mille A., Napoli A. (2006) Une première formalisation de la phase d’élaboration du raisonnement à partir de cas, in Actes du 14e atelier du raisonnement à partir de cas, Besançon, France.. [Google Scholar]
  • Huet C., Lemosquet A., Clairand I., Rioual J.B., Franck D., de Carlan L., Aubineau-Lanièce I.Bottollier-Depois J.F. (2009) SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005, Health Phys. 96, 76–83. [CrossRef] [PubMed] [Google Scholar]
  • ICRP Publication 89 (2002) Basic anatomical and physiological data for use in radiological protection, Ann. ICRP 32(3-4). [Google Scholar]
  • ICRU (1992) Phantoms and Computational Models in Therapy, Diagnosis and Protection, in International Commission on Radiation Units and Measurements, Report 48. [Google Scholar]
  • Jacob S.W. (1999) The complete visible man: the complete high resolution male and female anatomical datasets from the visible human project, J. Am. Med. Assoc. 281, 765. [CrossRef] [Google Scholar]
  • Kolodner J. (1993) Case-Based Reasoning, Morgan Kaufmann Publishers. [Google Scholar]
  • Kramer R., Zankl M., Williams G., Dexter G. (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: the male (Adam) and female (Eva) adult mathematical phantoms, Report GSF-Bericht S-885, München, GSF. [Google Scholar]
  • Kramer R., Vieira J.W., Khoury H.J., Lima F.R.A.Fülle D. (2003) All About MAX: A Male Adult VoXel phantom for Monte Carlo Calculations in Radiation Protection Dosimetry, Phys. Med. Biol. 48, 1239–1269. [CrossRef] [PubMed] [Google Scholar]
  • Kramer R., Khoury H.J., Vieira J.W., Loureiro E.C.M., Lima V.J.M., Lima F.R.A.Hoff G. (2004) All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry, Phys. Med. Biol. 49, 5203–5216. [CrossRef] [PubMed] [Google Scholar]
  • Lemosquet A., de Carlan L.Clairand I. (2003) Voxel anthropomorphics phantoms: review of models used for inionizing radiation protection, Radioprotection 38, 509–528. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lorin de la Grandmaison G., Clairand I.Durigon M. (2001) Organ weight in 684 adult autopsies: new tables for a Caucasoid population, Forensic. Sci. Intern. 119, 149–154. [CrossRef] [Google Scholar]
  • Makovicka L., Vasseur A., Sauget M., Martin E., Gschwind R., Henriet J.Salomon M. (2009) The future of new calculation concepts in dosimetry based on the Monte Carlo methods, Radioprotection 44, 77–88. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mille A. (1999) Tutorial CBR : Etat de l’art de raisonnement à partir de cas, Plate-forme AFIA’99, Palaiseau, France. [Google Scholar]
  • Mille A., Fuchs B., Herbeaux O. (1996) A unifying Framework for Adaptation in Case-Based Reasoning, in Workshop on Adaptation in Case-Based Reasoning, ECAI’96, Budapest, Hungary, pp. 22–28. [Google Scholar]
  • Padilla L., Lee C., Milner R., Shahlaee A.Bolch W.E. (2008) Canine Anatomic Phantom for Preclinical Dosimetry in Internal Emitter Therapy, J. Nucl. Med. 49, 446–452. [CrossRef] [PubMed] [Google Scholar]
  • Rasovska I. (2006) Contribution à une méthode de capitalisation des connaissances basée sur le raisonnement à partir de cas : Application au diagnostic dans une plateforme d’e-maintenance, Thèse de l’Université de Franche-Comté, Besançon, France [Google Scholar]
  • Snyder W.S., Ford M.R., Warner G.G. (1978) Estimates of absorbed fractions for mono-energetic photons sources uniformy distributed in various organs of a heterogeneous phantom, MIRD pamphlet number 5 revised, New York, The Society of Nuclear Medicine. [Google Scholar]
  • Tanaka G.I., Kawamura H.Nakahara Y. (1979) Reference Japanese man-I. Mass of organs and other characteristics of normal Japanese, Health Phys. 36, 333–346. [CrossRef] [PubMed] [Google Scholar]
  • Xu X.G., Chao T.C.Bozkurt A. (2000) VIP MAN, an imaged-based wholebody adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations, Health Phys. 78, 476–486. [CrossRef] [PubMed] [Google Scholar]
  • Zaidi H., Xu X.G. (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modelling in radiological sciences, Annu. Rev. Biomed. Eng. 9, 471–500. [CrossRef] [PubMed] [Google Scholar]
  • Zankl M., Viet R., Williams G., Schneider K., Fendel H., Petoussi N., Drexler G. (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection, Rad. Environm. Biophys. 27, 153–164. [CrossRef] [Google Scholar]
  • Zankl M., Panzer W., Petoussi-Hens N.Drexler G. (1995) Organ doses for children from computed tomographic examinations, Rad. Prot. Dosim. 57, 393–396. [Google Scholar]
  • Zankl M.Wittmann A. (2001) The adult male voxel model ‘Golem’ segmented from whole-body CT patient data, Rad. Environm. Biophys. 40, 153–162. [CrossRef] [PubMed] [Google Scholar]
  • Zubal I.G., Harrell C.R., Smith E.O., Rattner Z., Gindi G.Hoffer P.B. (1994) Computerized three dimensional segmented human anatomy, Med. Phys. 21, 299–302. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.