Numéro |
Radioprotection
Volume 44, Numéro 5, 2009
ECORAD 2008 - Radioecology and Environmental Radioactivity
|
|
---|---|---|
Page(s) | 553 - 558 | |
DOI | https://doi.org/10.1051/radiopro/20095102 | |
Publié en ligne | 6 juin 2009 |
Concentration ratios for chemical analogues of key nuclides for different vegetation types at the Olkiluoto site
1
Finnish Forest Research Institute, Parkano Research Unit, Kaironiementie 54, 39700 Parkano, Finland
2
Posiva Oy, Olkiluoto, 27160 Eurajoki, Finland
Olkiluoto Island on the western coast of Finland has been selected as a repository site for spent nuclear fuel in Finland. This study aimed at identifying differences in concentration ratios (CR), and their distributions, for the elements analysed on soil and vegetation samples taken on the island (Al, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, S, Zn). Many of the elements can be considered to be chemically analogous to radionuclides that, potentially, can be released from the repository. Differences between the soil and vegetation in different tree age, tree species and site fertility classes typical of the forest ecosystems in Olkiluoto were investigated. Lognormal distributions were fitted to the different groupings of the CR data calculated on the basis of the results from 94 sampling plots. In most cases no significant differences were found between the different groupings for a specific element when the 95% confidence intervals were applied. According to the results based on real site data for CRs in forest ecosystems on Olkiluoto, it appears that the current CR-based approach to radionuclide modelling in forest ecosystems is problematic due to the large variation in parameter values and in their practical definition.
© EDP Sciences, 2009
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.