Open Access
Issue
Radioprotection
Volume 60, Number 3, Juillet-Septembre 2025
Page(s) 211 - 220
DOI https://doi.org/10.1051/radiopro/2024056
Published online 15 September 2025
  • Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, Faix DJ, Goodman AM, Longhurst CA, Hogarth M, Smith DM. 2023. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Internal Med 183: 589–596. [Google Scholar]
  • Ayoub NF, Lee YJ, Grimm D, Divi V. 2023. Head-to-head comparison of ChatGPT versus google search for medical knowledge acquisition. Otolaryngol Head Neck Surg 8. https://doi.org/10.1002/ohn.465 [Google Scholar]
  • Cabinet Office, Fire and Disaster Management Agency. 2013. Manual for Preparation of Regional Disaster Prevention Plans (Nuclear Disaster Preparedness). Retrieved from https://www8.cao.go.jp/genshiryoku_bousai/keikaku/keikaku.html [Google Scholar]
  • Centers for Disease Control and Prevention (U.S.), Office of the Associate Director for Communication, Strategic and Proactive Communication Branch. 2009. Scientific and technical information simply put. Retrieved from https://stacks.cdc.gov/view/cdc/11938/cdc_11938_DS1pdf [Google Scholar]
  • Chandra A, Chakraborty A. 2024. Exploring the role of large language models in radiation emergency response. J Radiol Prot 44: 15, Article 011510. [Google Scholar]
  • Cheong RC, Unadkat S, McNeillis V, Williamson A, Joseph J, Randhawa P, Andrews P, Paleri V. 2024. Artificial intelligence chatbots as sources of patient education material for obstructive sleep apnoea: ChatGPT versus Google Bard. Eur Arch Otorhinolaryngol 281: 985–993. [Google Scholar]
  • Cotugna N, Vickery CE, Carpenter-Haefele KM. 2005. Evaluation of literacy level of patient education pages in health-related journals. J Community Health 30: 213–219. [CrossRef] [PubMed] [Google Scholar]
  • Decker H, Trang K, Ramirez J, Colley A, Pierce L, Coleman M, Bongiovanni T, Melton GB, Wick E. 2023. Large language model-based chatbot vs surgeon-generated informed consent documentation for common procedures. Jama Network Open 6: Article e2336997. [Google Scholar]
  • Dihan Q, Chauhan MZ, Eleiwa TK, Hassan AK, Sallam AB, Khouri AS, Chang TC, Elhusseiny AM. 2024. Using large language models to generate educational materials on childhood glaucoma. Am J Ophthalmol 265: 28–38. [Google Scholar]
  • Furukawa E, Okuhara T, Okada H, Shirabe R, Yokota R, Iye R, Kiuchi T. 2022. Translation, cross-cultural adaptation, and validation of the japanese version of the patient education materials assessment tool (PEMAT). Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph192315763 [Google Scholar]
  • Gauntlett L, Amlôt, R., Rubin GJ. 2019. How to inform the public about protective actions in a nuclear or radiological incident: a systematic review. Lancet Psychiatry 6: 72–80. [CrossRef] [PubMed] [Google Scholar]
  • Goto A, Lai AY, Kumagai A, Koizumi S, Yoshida K, Yamawaki K, Rudd RE. 2018. Collaborative processes of developing a health literacy toolkit: a case from Fukushima after the nuclear accident. J Health Commun 23: 200–206. [CrossRef] [PubMed] [Google Scholar]
  • Hellier E, Edworthy J, Newbold L, Titchener K, Tucker M, Gabe-Thomas E. 2014. Evaluating the application of research-based guidance to the design of an emergency preparedness leaflet. Appl Ergon 45: 1320–1329. [CrossRef] [PubMed] [Google Scholar]
  • Ito S, Furukawa E. 2024. Evaluating the understandability and actionability of online information on anemia in Japanese. Am J Health Educ 1–10. [Google Scholar]
  • Ito S, Furukawa E, Okuhara T, Okada H, Kiuchi T. in press Evaluating the overall quality of online information on nuclear power plant accidents in japanese. Radioprotection. [Google Scholar]
  • Ito S, Goto A, Ishii K, Ota M, Yasumura S, Fujimori K. 2017. Fukushima mothers’ concerns and associated factors after the fukushima nuclear power plant disaster. Asia Pac J Public Health 29: 151s–160s. [Google Scholar]
  • Jansen BJ, Spink. 2006. How are we searching the World Wide Web? A comparison of nine search engine transaction logs. Inf Process Manag 42: 248–263. [Google Scholar]
  • Kanda H, Takahashi K, Sugaya N, Mizushima S, Koyama K. 2014. Internet usage and knowledge of radiation health effects and preventive behaviours among workers in Fukushima after the Fukushima Daiichi nuclear power plant accident. Emerg Med J 31: e60–e65. [Google Scholar]
  • Lee J. 2016. Readability research for Japanese language education. Waseda Stud Jpn Lang Educ 21: 1–16. [Google Scholar]
  • Lee J, Sunakawa Y, Hori K, Hasebe Y. (2023). jReadability PORTAL. Retrieved from http://jreadability.net [Google Scholar]
  • Musheyev D, Pan A, Loeb S, Kabarriti AE. 2024. How well do artificial intelligence chatbots respond to the top search queries about urological malignancies? Eur Urol 85: 13–16. [Google Scholar]
  • Ohno K, Endo K. 2015. Lessons learned from Fukushima Daiichi nuclear power plant accident: efficient education items of radiation safety for general public. Radiat Protect Dosimetry 165: 510–512. [Google Scholar]
  • Pan A, Musheyev D, Bockelman D, Loeb S, Kabarriti AE. 2023. Assessment of artificial intelligence chatbot responses to top searched queries about cancer. JAMA Oncol 9: 1437–1440. [Google Scholar]
  • Rubin GJ, Amlôt, R., Wessely S, Greenberg N. 2012. Anxiety, distress and anger among British nationals in Japan following the Fukushima nuclear accident. Br J Psychiatry 201: 400–407. [Google Scholar]
  • Shen SA, Perez-Heydrich CA, Xie DX, Nellis JC. 2024. ChatGPT vs. web search for patient questions: what does ChatGPT do better? Eur Arch Otorhinolaryngol 7. https://doi.org/10.1007/s00405-024-08524-0 [Google Scholar]
  • Shoemaker SJ, Wolf MS, Brach C. 2014. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient Educ Couns 96: 395–403. [CrossRef] [PubMed] [Google Scholar]
  • Tsubokura M, Gilmour S, Takahashi K, Oikawa T, Kanazawa Y. 2012. Internal radiation exposure after the Fukushima nuclear power plant disaster. JAMA 308: 669–670. [Google Scholar]
  • United Nations Scientific Committee on the Effects of Atomic Radiation. 2015. Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure due to the nuclear accident following the great east-Japan earthquake and tsunami. http://www.unscear.org/unscear/publications.html [Google Scholar]
  • Weiss BD. 2003. Health Literacy: A Manual for Clinicians. American Medical Association, American Medical Foundation. https://www.yumpu.com/en/document/view/8189575/health-literacy-a-manual-for-clinicians [Google Scholar]
  • Wu CY, Lin WX, Zhang XM, Zhang Y, Xie WD, Wang YF. 2024. PMC-LLaMA: toward building open-source language models for medicine. J Am Med Inform Assoc 31: 1833–1843. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.