Free Access
Volume 59, Number 2, April - June
Page(s) 144 - 151
Published online 03 June 2024
  • Abou El-Eneen M, Morsi M, Soula M. 2020. Oral n-acetyl cysteine administration improved oxidative status in medical radiation workers. Arab. J. Nucl. Sci. Appl. 53: 19–25. [Google Scholar]
  • Ammar AAA. 2016. Use of onion and curcumin as radioprotectors against ionizing radiation induced hepato-testicular alterations in rats. Egypt. J. Hosp. Med. 65: 468–473. [Google Scholar]
  • Atun S, Aznam N, Arianingrum R, Ihda B, Naila A, Lestari A, Purnamaningsih NA. 2020. Characterization of curcuminoid from Curcuma xanthorrhiza and its activity test as antioxidant and antibacterial. Molekul. 15: 79–87. [Google Scholar]
  • Bagheri H, Rezapour S, Najafi M, Motevaseli E, Shekarchi B, Cheki M, Mozdarani H. 2018. Protection against radiation-induced micronuclei in rat bone marrow erythrocytes by curcumin and selenium L-methionine. Iran. J. Med. Sci. 43: 645–652. [Google Scholar]
  • Batcioglu K, Yilmaz Z, Satilmis B, Uyumlu AB. 2012. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allium sativum). Eur. Rev. Med. Pharmacol. Sci. 16: 47–57. [Google Scholar]
  • Belloir C, Singh V, Daurat C, Siess MH, Le Bon AM. 2006. Protective effects of garlic sulfur compounds against DNA damage induced by direct and indirect acting genotoxic agents in HepG2 cells. Food Chem. Toxicol. 44: 827–834. [Google Scholar]
  • Bertrand KFB, Pascal CDD, Désiré DDP, Arielle MFM, Odette SN, Sone M, Bertin TA, Joseph GF. 2016. Role of aged garlic extract against radiation induced oxidative stress associated with some biochemical disorders in male albino rats. Nucl. Med. 1: 1–21. [Google Scholar]
  • Capasso A. 2013. Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules 18: 690–700. [Google Scholar]
  • Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU. 2012. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol. Lett. 214: 166–174. [Google Scholar]
  • Darlina D, Kisnanto T, Tetriana D, Purnami S, Surniyantoro HNE, Syaifudin M. 2022. Evaluation of spontaneous DNA damage using the alkaline comet assay in lymphocyte cells of humans living in the high level natural radiation area of Mamuju, Indonesia. Environ. Nat. Resour. J. 20: 330–339. [Google Scholar]
  • El-Desouky WI, Mahmoud AH, Abbas MM. 2017. Antioxidant potential and hypolipidemic effect of whey protein against gamma irradiation induced damages in rats. Appl. Radiat. Isot. 129: 103–107. [Google Scholar]
  • Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77. [Google Scholar]
  • Gao J, Dong X, Liu T, Zhang L, Ao L. 2020. Antioxidant status and cytogenetic damage in hospital workers occupationally exposed to low dose ionizing radiation. Mutat.Res. Gen. Tox. En. 850-851: 1–7. [Google Scholar]
  • Hasan Basri IK, Yusuf D, Rahardjo T, Nurhayati S, Tetriana D, Ramadhani D, Alatas Z, Purnami S, Kisnanto T, Lusiyanti Y, Syaifudin M. 2017. Study of g-H2AX as DNA double strand break biomarker in resident living in high natural radiation area of Mamuju, West Sulawesi. J. Environ. Radioact. 171: 212–216. [Google Scholar]
  • Javadi A, Nikhbakht MR, Ghasemian Yadegari J, Rustamzadeh A, Mohammadi M, Shirazinejad A, Azadbakht S, Abdi Z. 2022. In vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: A review. Int. J. Radiat. Biol. 2022: 1–11. httpsr:// [Google Scholar]
  • Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, Bhuyan PP, Behera PK, Jena M, Sharma A, Agrawal PK, Behera RK. 2022. Phytochemicals: A potential next generation agent for radiopro-tection. Phytomedicine: 154188. [Google Scholar]
  • Kataoka Y, Murley JS, Baker KL, Grdina DJ. 2007. Relationship between phosphorylated histone H2AX formation and cell survival in Human Microvascular Endothelial Cells (HMEC) as a function of ionizing radiation exposure in the presence or absence of thiol-containing drugs. Radiat. Res. 168: 106–114. [Google Scholar]
  • Kilciksiz S, Demirel C, Erdal N, Gurgul S, Tamer L, Ayaz L, Ors Y. 2008. The effect ofN-acetylcysteine on biomarkers for radiation-induced oxidative damage in a rat model. Acta. Med. 62: 403–409. [Google Scholar]
  • Kisnanto T, Kurnia I, Sadikin M. 2020. Effect of garlic, stinky bean, dogfruit, tomato extracts, and N-acetylcysteine on rats after 5 Gy irradiation. Atom. Indones. 46: 53–60.. [Google Scholar]
  • Koiram PR, Veerapur VP, Kunwar A, Mishra B, Barik A, Priyadarsini IK, Mazhuvancherry UK. 2007. Effect of curcumin and curcumin copper complex (1:1) on radiation-induced changes ofantioxidant enzymes levels in the livers of swiss albino mice. J. Radiat. Res. 48: 241–245. [Google Scholar]
  • Kumaravel TS, Jha AN. 2006. Reliable comet assay measurements for detecting DNA damage induced by ionizing radiation and chemicals. Genet. Toxicol. Environ. Mutagen. 605: 7–16. [Google Scholar]
  • Liju VB, Thomas A, Sivadasan SD, Kuttan R, Maliakel B, Krishnakumar IM. 2020. Amelioration of radiation-induced damages in mice by curcuminoids: The role of bioavailability. Nutr. Cancer. 73: 617–629. [Google Scholar]
  • Mansour HH, Hafez HF, Fahmy NM, Hanafi N. 2008. Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats. Biochem. Pharmacol. 75: 773–780. [Google Scholar]
  • Mercantepe T, Topcu A, Rakici S, Tumkaya L, Yilmaz A, Mercantepe F. 1977. The radioprotective effect of N-acetylcysteine against x-radiation-induced renal injury in rats. Environ. Sci. Pollut. Res. 26: 29085–29094. [Google Scholar]
  • Nair CK, Menon A. 2013. Consumption of antioxidant dietary agents, curcumin and vitamin C, protects cellular DNA from gamma-radiation. Int. J. Radiat. Res. 11: 11–16. [Google Scholar]
  • Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. 2020. Radioprotection and radiomitigation: From the bench to clinical practice. Biomedicines 8: 1–57. [Google Scholar]
  • Ozcelik M, Erisir M, Guler O, Baykara M, Kirman E. 2018. The effect of curcumin on lipid peroxidation and selected antioxidants in irradiated rats. Acta Vet. Brno. 87: 379–385. [Google Scholar]
  • Rady AS, Korraa SS, Elshemey WM, Dakrory A. 2020. Evaluation of DNA damage in peripheral blood lymphocytes exposed to gamma radiation. J. Sci. Res. Sci.:48–59. [Google Scholar]
  • Rosidi A. 2020. The difference of curcumin and antioxidant activity in Curcuma xanthorrhiza at different regions. J. Adv. Pharm. Educ. Res. 10: 14–18. [Google Scholar]
  • Shabeeb D, Musa AE, Ali HSA, Najafi M. 2020. Curcumin protects against radiotherapy-induced oxidative injury to the skin. Drug Des. Devel. Ther. 14: 3159–3163. [Google Scholar]
  • Srinivasan M, Prasad NR, Menon VP. 2006. Protective effect of curcumin on gamma radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Genet. Toxicol. Environ. Mutagen. 611: 96–103. [Google Scholar]
  • Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, Menon VP. 2007. Modulatory effects of curcumin on ?-radiation-induced cellular damage in primary culture of isolated rat hepatocytes. Environ. Toxicol. Pharmacol. 24: 98–105. [Google Scholar]
  • Uzun L, Kokten N, Cam OH, Tayyar Kalcioglu M, Birol Ugur M, Tekin M, Acar GO. 2016. The effect of garlic derivatives (S-allylmercaptocysteine, diallyl disulfide, and S-allylcysteine) on gentamicin induced ototoxicity: An experimental study. Clin. Exp. Otorhinolaryngol. 9: 309–313. [Google Scholar]
  • Wills ED. 1971. Effects of lipid peroxidation on membrane-bound enzymes ofthe endoplasmic reticulum. Biochem. J. 123: 983–991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.