Open Access
Issue
Radioprotection
Volume 58, Number 3, July - September 2023
Page(s) 181 - 195
DOI https://doi.org/10.1051/radiopro/2023017
Published online 14 September 2023
  • Anderson D, Beresford NA, Ishiniwa H, Onuma M, Nanba K, Hinton TG. 2021. Radiocesium concentration ratios and radiation dose to wild rodents in Fukushima Prefecture. J. Environ. Radioactiv. 226. [Google Scholar]
  • Anderson D, Kaneko S, Harshman A, Okuda K, Takagi T, Chinn S, Beasley JC, Nanba K, Ishiniwa H, Hinton TG. 2022. Radiocesium accumulation and germ line mutations in chronically exposed wild boar from Fukushima, with radiation doses to human consumers of contaminated meat. Environ. Pollut. 306. [Google Scholar]
  • Beresford NA, Copplestone D. 2011. Effects of ionizing radiation on wildlife: What knowledge have we gained between the Chernobyl and Fukushima accidents? Integr. Environ. Asses. 7: 371–3. [CrossRef] [Google Scholar]
  • de With G, Bezhenar R, Maderich V, Yevdin Y, Iosjpe M, Jung KT, Qiao F, Perianez R. 2021. Development of a dynamic food chain model for assessment of the radiological impact from radioactive releases to the aquatic environment. J. Environ. Radioactiv. 233. [Google Scholar]
  • Fujiwara K, Takahashi T, Nguyen P, Kubota Y, Gamou S, Sakurai S, Takahashi S. 2015. Uptake and retention of radio-caesium in earthworms cultured in soil contaminated by the Fukushima Nuclear Power Plant accident. J. Environ. Radioactiv. 139: 135–9. [CrossRef] [Google Scholar]
  • Fuller N, Smith JT, Takase T, Ford AT, Wada T. 2022. Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima. Environ. Pollut. 292. [Google Scholar]
  • Fuma S, Ihara S, Kawaguchi I, Ishikawa T, Watanabe Y, Kubota Y, Sato Y, Takahashi H, Aono T, Ishii N, Soeda H, Matsui K, Une Y, Minamiya Y, Yoshida S. 2015. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima. J. Environ. Radioactiv. 143: 123–34. [CrossRef] [Google Scholar]
  • Fuma S, Ihara S, Takahashi H, Inaba O, Sato Y, Kubota Y, Watanabe Y, Kawaguchi I, Aono T, Soeda H, Yoshida S. 2017. Radiocaesium contamination and dose rate estimation of terrestrial and freshwater wildlife in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioactiv. 171: 176–88. [CrossRef] [Google Scholar]
  • Fuma S, Soeda H, Watanabe Y, Kubota Y, Aono T. 2019. Dose rate estimation of freshwater wildlife inhabiting irrigation ponds in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioactiv. 203: 172–8. [CrossRef] [Google Scholar]
  • Garnier-Laplace J, Beaugelin-Seiller K, Della-Vedova C, Métivier J-M, Ritz C, Mousseau TA, Møller AP. 2015. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships. Sci. Rep. 5. [Google Scholar]
  • Garnier-Laplace J, Beaugelin-Seiller K, Hinton TG. 2011. Fukushima wildlife dose reconstruction signals ecological consequences. Environ. Sci. Technol. 45: 5077–8. [CrossRef] [PubMed] [Google Scholar]
  • Giraudeau M, Bonzom JM, Ducatez S, Beaugelin-Seiller K, Deviche P, Lengagne T, Cavalie I, Camilleri V, Adam-Guillermin C, McGraw KJ. 2018. Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima. Sci. Rep. 8: 7438. [CrossRef] [Google Scholar]
  • Gombeau K, Bonzom J-M, Cavalie I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud J-P, Lengagne T, Armant O, Ravanat J-L, Adam-Guillermin C. 2020. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. J. Environ. Radioactiv. 225. [Google Scholar]
  • Hancock S, Vo NTK, Omar-Nazir L, Batlle JVI, Otaki JM, Hiyama A, Byun SH, Seymour CB, Mothersill C. 2019. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi Nuclear Power Plant meltdown accident. Environ Res. 168: 230–40. [CrossRef] [Google Scholar]
  • Hinton TG, Alexakhin R, Balonov M, Gentner N, Hendry J, Prister B, Strand P, Woodhead D. 2007. Radiation-induced effects on plants and animals: Findings of the United Nations Chernobyl Forum. Health Phys. 93: 427–40. [CrossRef] [PubMed] [Google Scholar]
  • Hiyama A, Nohara C, Kinjo S, Taira W, Gima S, Tanahara A, Otaki JM. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2. [Google Scholar]
  • Horemans N, Nauts R, Batlle JVI, Van Hees M, Jacobs G, Voorspoels S, Gaschak S, Nanba K, Saenen E. 2018. Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima. J. Environ. Radioactiv. 192: 405–16. [CrossRef] [Google Scholar]
  • IAEA. 2006. Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group “Environment”. International Atomic Energy Agency. [Google Scholar]
  • IAEA. 2014. IAEA Safety standards for protecting people and the environment. General safety requirements part 3. Radiation protection and safety of radiation sources: International Basic Safety Standards. International Atomic Energy Agency. [Google Scholar]
  • ICRP Publication 103. 2007. The 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 37. [Google Scholar]
  • ICRP Publication 108. 2008. Environmental protection: The concept and use of reference animals and plants. Ann. ICRP 38. [Google Scholar]
  • ICRP Publication 124. 2014. Protection of the environment under different exposure situations. Ann. ICRP 43. [Google Scholar]
  • Ishiniwa H, Okano T, Yoshioka A, Tamaoki M, Yokohata Y, Shindo J, Azuma N, Nakajima N, Onuma M. 2019. Concentration of radioactive materials in small mammals collected from a restricted area in Fukushima, Japan since 2012. Ecol. Res. 34: 7. [CrossRef] [Google Scholar]
  • Johansen MP, Ruedig E, Tagami K, Uchida S, Higley K, Beresford NA. 2015. Radiological dose rates to marine fish from the Fukushima Daiichi accident: The first three years across the North Pacific. Environ. Sci. Technol. 49: 1277–85. [CrossRef] [PubMed] [Google Scholar]
  • Kawagoshi T, Shiomi N, Takahashi H, Watanabe Y, Fuma S, Doi K, Kawaguchi I, Aoki M, Kubota M, Furuhata Y, Shigemura Y, Mizoguchi M, Yamada F, Tomozawa M, Sakamoto SH, Yoshida S, Kubota Y. 2017. Chromosomal aberrations in large Japanese field mice (Apodemus speciosus) captured near Fukushima Dai-ichi Nuclear Power Plant. Environ. Sci. Technol. 51: 4632–41. [CrossRef] [PubMed] [Google Scholar]
  • Keum D-K, Kim B-H, Lim K-M, Choi Y-H. 2014. Radiation exposure to marine biota around the Fukushima Daiichi NPP. Environ. Monit. Assess. 186: 2949–56. [CrossRef] [PubMed] [Google Scholar]
  • Keum D-K, Jun I, Kim B-H, Lim K-M, Choi Y-H. 2015. A dynamic model to estimate the activity concentration and whole body dose rate of marine biota as consequences of a nuclear accident. J. Environ. Radioactiv. 140: 84–94. [CrossRef] [Google Scholar]
  • Kryshev II, Kryshev AI, Sazykina TG. 2012. Dynamics of radiation exposure to marine biota in the area of the Fukushima NPP in March–May 2011. J. Environ. Radioactiv. 114: 157–61. [CrossRef] [Google Scholar]
  • Kubota Y, Takahashi H, Watanabe Y, Fuma S, Kawaguchi I, Aoki M, Kubota M, Furuhata Y, Shigemura Y, Yamada F, Ishikawa T, Obara S, Yoshida S. 2015a. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioactiv. 142: 124–31. [CrossRef] [Google Scholar]
  • Kubota Y, Tsuji H, Kawagoshi T, Shiomi N, Takahashi H, Watanabe Y, Fuma S, Doi K, Kawaguchi I, Aoki M, Kubota M, Furuhata Y, Shigemura Y, Mizoguchi M, Yamada F, Tomozawa M, Sakamoto SH, Yoshida S. 2015b. Chromosomal aberrations in wild mice captured in areas differentially contaminated by the Fukushima Dai-Ichi Nuclear Power Plant accident. Environ. Sci. Technol. 49: 10074–83. [CrossRef] [PubMed] [Google Scholar]
  • Møller AP, Nishiumi I, Mousseau TA. 2015. Cumulative effects of radioactivity from Fukushima on the abundance and biodiversity of birds. J. Ornithol. 156: S297– S305. [CrossRef] [Google Scholar]
  • Pederson SL, Li Puma MC, Hayes JM, Okuda K, Reilly CM, Beasley JC, Li Puma LC, Hinton TG, Johnson TE, Freeman KS. 2020. Effects of chronic low-dose radiation on cataract prevalence and characterization in wild boar (Sus scrofa) from Fukushima, Japan. Sci. Rep-UK 10. [Google Scholar]
  • Real A, Garnier-Laplace J. 2020. The importance of deriving adequate wildlife benchmark values to optimize radiological protection in various environmental exposure situations. J. Environ. Radioactiv. 211: 105902. [CrossRef] [Google Scholar]
  • Sproull M, Hayes J, Ishiniwa H, Nanba K, Shankavaram U, Camphausen K, Johnson TE. 2021. Proteomic biomarker analysis of serum from Japanese field mice (Apodemus speciosus) collected within the Fukushima difficult-to-return zone. Health Phys. 121: 564–73. [CrossRef] [PubMed] [Google Scholar]
  • Strand P, Aono T, Brown J, Garnier-Laplace J, Hosseini A, Sazykina T, Steenhuisen F, Vives i Batlle J. 2014. Assessment of Fukushima-derived radiation doses and effects on wildlife in Japan. Environ. Sci. Technol. Lett. 1: 198–203. [CrossRef] [Google Scholar]
  • Tagami K, Uchida S, Wood MD, Beresford NA. 2018. Radiocaesium transfer and radiation exposure of frogs in Fukushima Prefecture. Sci. Rep. 8. [Google Scholar]
  • Toyoda S, Murahashi M, Natsuhori M, Ito S, Ivannikov A, Todaka A. 2019. Retrospective ESR reconstruction of cattle tooth enamel doses from the radioactive nuclei released by the accident of Fukushima Dai-Ichi atomic power plants. Radiat. Prot. Dosim. 186: 48–53. [Google Scholar]
  • UNSCEAR. 2013. Annex A. Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. New York: United Nations. [Google Scholar]
  • UNSCEAR. 2014. Annex A: Levels and effects of radiation exposure to the nuclear accident after the 2011 Great East-Japan earthquake and tsunami. New York: United Nations. [Google Scholar]
  • UNSCEAR. 2021. Annex B. Levels and effects of radiation exposure due to the accident at the Fukushima Daiichi Nuclear Power Station: Implications of information published since the UNSCEAR 2013 Report. New York: United Nations. [Google Scholar]
  • Urushihara Y, Kawasumi K, Endo S, Tanaka K, Hirakawa Y, Hayashi G, Sekine T, Kino Y, Kuwahara Y, Suzuki M, Fukumoto M, Yamashiro H, Abe Y, Fukuda T, Shinoda H, Isogai E, Arai T, Fukumoto M. 2016. Analysis of plasma protein concentrations and enzyme activities in cattle within the ex-evacuation zone of the Fukushima Daiichi Nuclear Plant accident. PloS One 11. [Google Scholar]
  • Vives i Batlle J, Aono T, Brown JE, Hosseini A, Gamier-Laplace J, Sazykina T, Steenhuisen F, Strand P. 2014. The impact of the Fukushima nuclear accident on marine biota: Retrospective assessment of the first year and perspectives. Sci. Total. Evviron. 487: 143–53. [CrossRef] [Google Scholar]
  • Watanabe Y, Ichikawa S, Kubota M, Hoshino J, Kubota Y, Maruyama K, Fuma S, Kawaguchi I, Yoschenko VI, Yoshida S. 2015. Morphological defects in native Japanese fir trees around the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 5: 13232. [CrossRef] [Google Scholar]
  • Yoschenko V, Nanba K, Yoshida S, Watanabe Y, Takase T, Sato N, Keitoku K. 2016. Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. J. Environ. Radioactiv. 165: 60–7. [CrossRef] [Google Scholar]
  • Yoshioka A, Mishima Y, Fukasawa K. 2015. Pollinators and other flying insects inside and outside the Fukushima evacuation zone. PloS One 10: e0140957. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.