Free Access
Volume 54, Number 2, April–June 2019
Page(s) 133 - 140
Published online 21 March 2019
  • Ababneh AM, Eyadeh MM. 2015. Coincidence summing corrections in HPGe gamma-ray spectrometry for Marinelli-beakers geometry using peak to total (P/T) calibration. J. Radiat. Res. Appl. Sci. 8: 323–327. [CrossRef] [Google Scholar]
  • Abbas MI. 2007. Direct mathematical method for calculating full-energy peak efficiency and coincidence corrections of HPGe detectors for extended sources. Nucl. Instr. Meth. Phys. Res. B 256: 554–557. [CrossRef] [Google Scholar]
  • Abbas MI, Selim YS, Bassiouni M. 2001. HPGe detector photopeak efficiency calculation including self-absorption and coincidence corrections for cylindrical sources using compact analytical expressions. Radiat. Phys. Chem. 61: 429–431. [CrossRef] [Google Scholar]
  • Aguiar JC, Galiano E, Fernandez J. 2006. Peak efficiency calibration for attenuation corrected cylindrical sources in gamma ray spectrometry by the use of a point source. Appl. Radiat. Isot. 64: 1643–1647. [CrossRef] [PubMed] [Google Scholar]
  • Badawi MS, Gouda MM, Nafee SS, El-Khatib AM, El-Mallah EA. 2012. New analytical approach to calibrate the co-axial HPGe detectors including correction for source matrix self-attenuation. Appl. Radiat. Isot. 70: 2661–2668. [CrossRef] [PubMed] [Google Scholar]
  • Budjáš D, Heisel M, Maneschg W, Simgen H. 2009. Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl. Radiat. Isot. 67: 706–710. [CrossRef] [PubMed] [Google Scholar]
  • Conti C, Salinas I, Zylberberg H. 2013. A detailed procedure to simulate an HPGe detector with MCNP5. Prog. Nucl. Energy 66: 35–40. [CrossRef] [Google Scholar]
  • Debertin K, Schötzig U. 1979. Coincidence summing corrections in Ge (Li)-spectrometry at low source-to-detector distances. Nucl. Instr. Meth. Phys. Res. 158: 471–477. [CrossRef] [Google Scholar]
  • El-Khatib AM, Thabet AA, Elzaher MA, Badawi MS, Salem BA. 2014. Study on the effect of the self-attenuation coefficient on γ-ray detector efficiency calculated at low and high energy regions. Nucl. Eng. Technol. 46: 217–224. [CrossRef] [Google Scholar]
  • Giubrone G, Ortiz J, Gallardo S, Martorell S, Bas M. 2016. Calculation of coincidence summing correction factors for an HPGe detector using GEANT4. J. Environ. Radioact. 158: 114–118. [CrossRef] [PubMed] [Google Scholar]
  • Hardy J, Iacob V, Sanchez-Vega M, Effinger R, Lipnik P, Mayes V, Willis D, Helmer R. 2002. Precise efficiency calibration of an HPGe detector: Source measurements and Monte Carlo calculations with sub-percent precision. Appl. Radiat. Isot. 56: 65–69. [CrossRef] [PubMed] [Google Scholar]
  • Helmer R, Nica N, Hardy J, Iacob V. 2004. Precise efficiency calibration of an HPGe detector up to 3.5 MeV, with measurements and Monte Carlo calculations. Appl. Radiat. Isot. 60: 173–177. [CrossRef] [PubMed] [Google Scholar]
  • Hurtado S, Garcıa-León M, Garcıa-Tenorio R. 2004. GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl. Instr. Meth. Phys. Res. A 518: 764–774. [CrossRef] [Google Scholar]
  • Khan W, Zhang Q, He C, Saleh M. 2018. Monte Carlo simulation of the full energy peak efficiency of an HPGe detector. Appl. Radiat. Isot. 131: 67–70. [CrossRef] [PubMed] [Google Scholar]
  • Khater A, Ebaid Y. 2008. A simplified gamma-ray self-attenuation correction in bulk samples. Appl. Radiat. Isot. 66: 407–413. [CrossRef] [PubMed] [Google Scholar]
  • Lee M, Park TS, Woo J-K. 2008. Coincidence summing effects in gamma-ray spectrometry using a Marinelli beaker. Appl. Radiat. Isot. 66: 799–803. [CrossRef] [PubMed] [Google Scholar]
  • Mostajaboddavati M, Hassanzadeh S, Faghihian H. 2006. Efficiency calibration and measurement of self-absorption correction for environmental gamma-spectroscopy of soil samples using Marinelli beaker. J. Radioanal. Nucl. Chem. 268: 539–544. [Google Scholar]
  • Pilleyre T, Sanzelle S, Miallier D, Fain J, Courtine F. 2006. Theoretical and experimental estimation of self-attenuation corrections in determination of 210Pb by γ-spectrometry with well Ge detector. Radiat. Meas. 41: 323–329. [Google Scholar]
  • Quintana B, Montes C. 2014. Summing-coincidence corrections with Geant4 in routine measurements by γ spectrometry of environmental samples. Appl. Radiat. Isot. 87: 390–393. [CrossRef] [PubMed] [Google Scholar]
  • Rodenas J, Pascual A, Zarza I, Serradell V, Ortiz J, Ballesteros L. 2003. Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl. Instr. Meth. Phys. Res. A 496: 390–399. [CrossRef] [Google Scholar]
  • Shizuma K, Oba Y, Takada M. 2016. A practical method for determining γ-ray full-energy peak efficiency considering coincidence-summing and self-absorption corrections for the measurement of environmental samples after the Fukushima reactor accident. Nucl. Instr. Meth. Phys. Res. B 383: 183–190. [CrossRef] [Google Scholar]
  • Vargas MJ, Timón AF, Dı́az NC, Sánchez DP. 2002. Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. Appl. Radiat. Isot. 57: 893–898. [CrossRef] [PubMed] [Google Scholar]
  • Vidmar T, Korun M, Vodenik B. 2007. A method for calculation of true coincidence summing correction factors for extended sources. Appl. Radiat. Isot. 65: 243–246. [CrossRef] [PubMed] [Google Scholar]
  • Wang Z, Kahn B, Valentine JD. 2002. Efficiency calculation and coincidence summing correction for germanium detectors by Monte Carlo simulation. IEEE Trans. Nucl. Sci. 49: 1925–1931. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.