Free Access
Issue
Radioprotection
Volume 53, Number 4, October-December 2018
Page(s) 241 - 248
DOI https://doi.org/10.1051/radiopro/2018039
Published online 23 November 2018
  • Adams FH, Norman A, Bass D, Oku G. 1978. Chromosome damage in infants and children after cardiac catheterization and angiocardiography. Pediatrics 62: 312–316. [PubMed] [Google Scholar]
  • Azqueta A, Slyskova J, Langie SA, OʼNeill Gaivao I, Collins A. 2014. Comet assay to measure DNA repair: approach and applications. Front. Genet. 5: 288. [CrossRef] [PubMed] [Google Scholar]
  • Bergeron F, Auvré F, Radicella JP, Ravanat J-L. 2010. HO° radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc. Natl. Acad. Sci. U.S.A. 107: 5528–5533. [Google Scholar]
  • Bourdat A-G, Douki T, Frelon S, Gasparutto D, Cadet J. 2000. Tandem base lesions are generated by hydroxyl radical within isolated DNA in aerated aqueous solution. J. Am. Chem. Soc. 122: 4549–4556. [Google Scholar]
  • Bourguignon M. 2017. Radioprotection, the way forward. Radioprotection 52: 227. [CrossRef] [EDP Sciences] [Google Scholar]
  • Box HC, Budzinski EE, Dawidzik JB, Wallace JC, Iijima H. 1998. Tandem lesions and other products in X-irradiated DNA oligomers. Radiat. Res. 149: 433–439. [CrossRef] [PubMed] [Google Scholar]
  • Cadet J, Douki T, Ravanat J-L. 2010. Oxidatively generated base damage to cellular DNA. Free Radic. Biol. Med. 49: 9–21. [CrossRef] [PubMed] [Google Scholar]
  • Cadet J, Douki T, Ravanat J-L. 2011. Measurement of oxidatively generated base damage in cellular DNA. Mutat. Res. 711: 3–12. [CrossRef] [PubMed] [Google Scholar]
  • Cadet J, Douki T, Ravanat J-L, Wagner R. 2012a. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. Bioanalytical Rev. 4: 55–74. [CrossRef] [Google Scholar]
  • Cadet J, Ravanat J-L, Taverna-Porro M, Menoni H, Angelov D. 2012b. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer letters 327: 5–15. [CrossRef] [PubMed] [Google Scholar]
  • Cheng Y, Li F, Mladenov E, Iliakis G. 2015. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing. Radiother. Oncol. 116: 366–373. [CrossRef] [PubMed] [Google Scholar]
  • Colin C, Devic C, Noel A, Rabilloud M, Zabot MT, Pinet-Isaac S, Giraud S, Riche B, Valette PJ, Rodriguez-Lafrasse C, Foray N. 2011. DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells. Int. J. Radiat. Biol. 87: 1103–1112. [CrossRef] [PubMed] [Google Scholar]
  • Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. 2008. The comet assay: topical issues. Mutagenesis 23: 143–151. [CrossRef] [PubMed] [Google Scholar]
  • Douki T, Ravanat J-L, Frelon S, Bourdat A-G, Pouget J-P, Cadet J. 2003. HPLC-MS/MS measurement of oxidative base damage to isolated and cellular DNA. In: Critical reviews of oxidative stress and aging: Intervention (RG. Cutler, H. Rodriguez, Eds.), pp. 190–202. Singapore: Wold Scientific publisher. [Google Scholar]
  • Douki T, Ravanat J-L, Pouget J-P, Testard I, Cadet J. 2006. Minor contribution of direct ionization to DNA base damage induced by heavy ions. Int. J. Radiat. Biol. 82: 119–127. [CrossRef] [PubMed] [Google Scholar]
  • Dupont C, Patel C, Ravanat JL, Dumont E. 2013. Addressing the competitive formation of tandem DNA lesions by a nucleobase peroxyl radical: a DFT-D screening. Org. Biomol. Chem. 14: 3038–3045. [Google Scholar]
  • Eccles LJ, Lomax ME, OʼNeill P. 2010. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Nucleic Acids Res. 38: 1123–1134. [CrossRef] [PubMed] [Google Scholar]
  • Eccles LJ, OʼNeill P, Lomax ME. 2011. Delayed repair of radiation induced clustered DNA damage: friend or foe? Mutat. Res. 711: 134–141. [CrossRef] [PubMed] [Google Scholar]
  • Foray N, Bourguignon M, Hamada N. 2016. Individual response to ionizing radiation. Mutat. Res. 770: 369–386. [Google Scholar]
  • Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat J-L, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. 2017. Ionizing radiation biomarkers in epidemiological studies – An update. Mutat. Res./Rev. Mutat. Res. 771: 59–84. [CrossRef] [PubMed] [Google Scholar]
  • Jakob B, Taucher-Scholz G. 2017. Live cell imaging to study real-time atm-mediated recruitment of DNA repair complexes to sites of ionizing radiation-induced DNA damage. Methods Mol. Biol. 1599: 287–302. [CrossRef] [PubMed] [Google Scholar]
  • Kakarougkas A, Jeggo PA. 2014. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87: 20130685. [CrossRef] [PubMed] [Google Scholar]
  • Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709–715. [CrossRef] [PubMed] [Google Scholar]
  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. 2010. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9: 662–669. [CrossRef] [PubMed] [Google Scholar]
  • Lomax ME, Gulston MK, OʼNeill P. 2002. Chemical aspects of clustered DNA damage induction by ionising radiation. Radiat. Prot. Dosim. 99: 63–68. [CrossRef] [Google Scholar]
  • Marnett LJ, Riggins JN, West JD. 2003. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Invest. 111: 583–593. [CrossRef] [PubMed] [Google Scholar]
  • Mothersill C, Seymour CB. 1998. Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure. Mutagenesis 13: 421–426. [CrossRef] [PubMed] [Google Scholar]
  • Myles GM, Sancar A. 1989. DNA repair. Chem. Res. Toxicol. 2: 197–226. [CrossRef] [PubMed] [Google Scholar]
  • Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat J-L. 2015. Stress-induced DNA damage biomarkers: Applications and limitations. Frontiers Chem. 3: 35. [CrossRef] [Google Scholar]
  • Nikjoo H. 1990. Mechanism of DNA damage by direct and indirect effects – a review of experimental and theoretical data. Int. J. Radiat. Biol. 57: 1257–1257. [Google Scholar]
  • OʼDriscoll M. 2012. Diseases associated with defective responses to DNA damage. Cold Spring Harb. Perspect. Biol. 4: a012773–a012773. [PubMed] [Google Scholar]
  • Pouget J-P, Frelon S, Ravanat J-L, Testard I, Odin F, Cadet J. 2002. Formation of modified DNA bases in cells exposed either to gamma radiation or to high-LET particles. Radiat. Res. 157: 589–595. [CrossRef] [PubMed] [Google Scholar]
  • Pouget JP, Georgakilas AG, Ravanat JL. 2018. Targeted and off-target (Bystander and Abscopal) Effects of radiation therapy: Redox mechanisms and risk/benefit analysis. Antioxid. Redox Signal. 29: 1447–1487. [Google Scholar]
  • Ravanat JL. 2012. Chromatographic methods for the analysis of oxidatively damaged DNA. Free Radic. Res. 46: 479–491. [CrossRef] [PubMed] [Google Scholar]
  • Ravanat JL, Douki T. 2016. UV and ionizing radiations induced DNA damage, differences and similarities. J. Rad. Phys. Chem. 128: 92–102. [CrossRef] [Google Scholar]
  • Ravanat JL, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, Lasserre L, Saint-Pierre C, Favier A, Cadet J. 2002. Cellular background level of 8-oxo-7,8-dihydro-2᾿-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23: 1911–1918. [CrossRef] [PubMed] [Google Scholar]
  • Ravanat JL, Cadet J, Douki T. 2012. Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr. Mol. Med. 12: 655–674. [CrossRef] [PubMed] [Google Scholar]
  • Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S. 2014. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br. J. Radiol. 87: 20130715. [CrossRef] [PubMed] [Google Scholar]
  • Regulus P, Spessotto S, Gateau M, Cadet J, Favier A, Ravanat J-L. 2004. Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry. Rapid. Commun. Mass. Spectrom. 18: 2223–2228. [CrossRef] [PubMed] [Google Scholar]
  • Sage E, Shikazono N. 2017. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic. Biol. Med. 107: 125–135. [CrossRef] [PubMed] [Google Scholar]
  • Santos Mello R, Callisen H, Winter J, Kagan AR, Norman A. 1983. Radiation dose enhancement in tumors with iodine. Med. Phys. 10: 75–78. [CrossRef] [PubMed] [Google Scholar]
  • Schermerhorn KM, Delaney S. 2014. A chemical and kinetic perspective on base excision repair of DNA. Acc. Chem. Res. 47, 1238–1246. [CrossRef] [PubMed] [Google Scholar]
  • Vogin G, Bastogne T, Bodgi L, Gillet-Daubin J, Canet A, Pereira S, Foray N. 2018. The phosphorylated ATM immunofluorescence assay: A high-performance radiosensitivity assay to predict postradiation therapy overreactions. Int. J. Radiat. Oncol. Biol. Phys. 101: 690–693. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.