Free Access
Issue
Radioprotection
Volume 51, Number 4, October-December 2016
Page(s) 279 - 285
DOI https://doi.org/10.1051/radiopro/2016073
Published online 10 November 2016
  • Abadeer N.S., Murphy C.J. (2016) Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles, J. Phys. Chem. C 120 (9), 4691-4716. [CrossRef] [Google Scholar]
  • Agostinelli S. et al. (2003) Geant4- a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 506, 250-303. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  • Allison J. et al. (2006) Geant4 developments and applications, IEEE Transactions on Nuclear Science 53, 270-278. [NASA ADS] [CrossRef] [Google Scholar]
  • Avnesh S., Thakor M.D., Sanjiv S., Gambhir, M.D. (2013) Nano oncology: The future of cancer diagnosis and therapy, CA: A Cancer Journal for Clinicians, DOI:10.3322/caac.21199. [Google Scholar]
  • BahreyniToossi M.T. et al. (2012) A Monte Carlo study on tissue dose enhancement in brachytherapy: a comparison between gadolinium and gold nanoparticles, Australas. Phys. Eng. Sci. Med. 35, 177-185. [CrossRef] [PubMed] [Google Scholar]
  • Berrezoug A., Dib A.S.A., Belbachir A.H. (2015) Enhanced X-ray absorption by using gold nanoparticles in a biological tissue, Radioprotection 50 (4), 281-285. [CrossRef] [Google Scholar]
  • Boisselier E., Astruc D. (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev. 38, 1759-1782. [CrossRef] [PubMed] [Google Scholar]
  • Brun E., Simon-Deckers A., Carriere M., Sanche L., Sicard-Roselli C. (2008) Experimental Evidence of Gold Nanoparticle Radio-sensitization in vitro, Radioprotection 43 (5), 185. [CrossRef] [Google Scholar]
  • Brun E., Cloutier P., Sicard-Roselli C., Fromm M., Sanche L. (2009) Damage induced to dna by low-energy (0–30 eV) electrons under vacuum and atmospheric conditions, J. Phys. Chem. B 113 (29), 10008-10013. [CrossRef] [PubMed] [Google Scholar]
  • Butterworth K.T. et al. (2008) Gold nanoparticles: from nanomedicine to nano sensing, Nanotechnol. Sci. Appl. 1, 4566. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Carmeliet P., Jain R.K. (2000) Angiogenesis in cancer and other diseases, Nature 407 (6801), 249-257. [CrossRef] [PubMed] [Google Scholar]
  • Casta R., Champeaux J.P., Sence M., Moretto-Capelle P., Cafarelli P., Amsellem A., Sicard-Roselli C. (2014) Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation: experiment and simulations, J. Nanopart. Res. 16 (4), 2348. [CrossRef] [Google Scholar]
  • Chauvie S., Francis Z., Guatelli S., Incerti S., Mascialino B., Moretto P., Nieminen P., Pia M.G. (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models, IEEE Transactions on Nuclear Science 54 (6), 2619-2628. [CrossRef] [Google Scholar]
  • Cho S.H. (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study, Phys. Med. Biol. 50, N163-N173. [CrossRef] [PubMed] [Google Scholar]
  • Chow J.C.L., Leung M.K.K., Jaffray D.A. (2012) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams, Phys. Med. Biol. 57, 3323-3331. [CrossRef] [PubMed] [Google Scholar]
  • Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D. (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small 1, 325-327. [CrossRef] [PubMed] [Google Scholar]
  • Delaram P., Mahdi G., Mehdi M. (2013) Tumor dose enhancement by gold nanoparticles in a 6 MV photon beam: a Monte Carlo study on the size effect of nanoparticles, NUKLEONIKA 58 (2), 275-280. [Google Scholar]
  • Garnica-Garza H. (2013) Microdosimetry of X-ray irradiated gold nanoparticles, Radiat. Prot. Dosim. 155, 59-63. [CrossRef] [Google Scholar]
  • Herold D.M. et al. (2000) Gold micro-spheres: a selective technique for producing biologically effective dose enhancement, Int. J. Radiat. Biol. 76, 1357-1364. [CrossRef] [PubMed] [Google Scholar]
  • Incerti S., Suerfu B., Xu J., Ivantchenko V., Mantero A., Brown J.M.C., Bernal M.A., Francis Z., Karamitros M., Tran H.N. (2016) Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit, Nucl. Instrum. Methods Phys. Res. B 372, 91-101. [CrossRef] [Google Scholar]
  • Jones B.L., Krishnan S., Cho S.H. (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations, Med. Phys. 37, 3809-3816. [CrossRef] [PubMed] [Google Scholar]
  • Kadri O., Ivanchenko V., Gharbi F., Trabelsi A. (2009) Incorporation of the Goudsmit-Saunderson electron transport theory in the Geant4 Monte Carlo code, Nucl. Instrum. Methods Phys. Res. B 267 (23-24), 3624-3632. [CrossRef] [Google Scholar]
  • Lechtman E., Chattopadhyay N., Cai Z., Mashouf S., Reilly R., Pignol J.P. (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location, Phys. Med. Biol. 56 (15), 4631-4647. [CrossRef] [PubMed] [Google Scholar]
  • Lechtman E., Mashouf S., Chattopadhyay N., Keller B., Lai P., Cai Z., Reilly R., J-P P (2013) A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness, Phys. Med. Biol. 58, 3075-3087. [CrossRef] [PubMed] [Google Scholar]
  • Leung M.K. et al. (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production, Med. Phys. 38, 624-631. [CrossRef] [PubMed] [Google Scholar]
  • McMahon S.J., Hyland W.B., Muir M.F., Coulter J.A., Jain S., Butterworth K.T., Schettino G., Dickson G.R., Hounsell A.R., OSullivan J.M., Prise K.M., Hirst D.G., Currell F.J. (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Sci. Rep. 1, 18. [CrossRef] [PubMed] [Google Scholar]
  • Noblet C., Chiavassa S., Smekens F., Sarrut D., Passal V., Suhard J., Lisbona A., Paris F., Delpon G. (2016) Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films, Phys. Med. Biol. 61, 3521-3535. [CrossRef] [PubMed] [Google Scholar]
  • Rahman W.N., Bishara N., Ackerly T., Fa He C., Jackson P., Wong C. (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy, Nanomedicine: Nanotechnology, Biology, and Medicine 5, 136-142. [CrossRef] [Google Scholar]
  • Ricketts K., Castoldi A., Guazzoni C., Ozkan C., Christodoulou C., Gibson A.P., Royle G.J. (2012) A quantitative X-ray detection system for gold nanoparticle tumour biomarkers, Phys. Med. Biol. 57, 5543-5555. [CrossRef] [PubMed] [Google Scholar]
  • Sanche L. (2009) Role of secondary low energy electrons in radiobiology and chemoradiation therapy of cancer, Chem. Phys. Lett. 474, 16. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.