Free Access
Volume 51, Number 4, October-December 2016
Page(s) 255 - 263
Published online 30 September 2016
  • Abd El-Mageed A.I., El-Kamel A.H., Abbady A., Harb S., Youssef A.M.M., Saleh I.I. (2011) Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environments of Juban town in Yemen, Radiat. Phys. Chem. 80, 710-715. [CrossRef] [Google Scholar]
  • Akhtar N., Tufail M., Ashraf M., Iqbal M.M. (2005) Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan, Radiat. Meas. 39, 11-14. [CrossRef] [Google Scholar]
  • Alharbi W.R., Al Zahrani J.H. (2012) Assessment of natural radioactivity levels and associated radiation hazards of building materials used in Saudi Arabia, J. Am. Sci. 8, 10. [Google Scholar]
  • Ali M., Qureshi A.A., Waheed A., Baloch M.A., Qayyum H., Tufail M., Khan H.A. (2011) Assessment of radiological hazard of NORM in Margalla Hills limestone, Pakistan, Environ. Monit. Assess. 184, 4623-4634. [Google Scholar]
  • Ali M., Shariff A.A., Qamar N., Laghari A. (2012) Comparison of the Nagarparkar (Pakistan) and Malani (India) granites with reference to uranium and thorium abundances, Journal of Himalayan Earth Sciences 45 (1), 67-76. [Google Scholar]
  • Amanat A., Orfi S.D., Qureshi A.A. (2002) Assessment of the Natural Radioactivity and its radiological hazards in Shewa Shahbaz Garhi Igneous Complex, Peshawer Plain, N.W. Pakistan, Health Phys. 82 (1), 74-79. [CrossRef] [PubMed] [Google Scholar]
  • Anjos R.M., Veiga R., Soares T., Santos A.M.A., Aguiar J.G., Frascá M.H.B.O., Brage J.A.P., Uzêda D., Mangia L., Facure A., Mosquera B., Carvalho C., Gomes P.R.S. (2005) Natural radionuclide distribution in Brazilian commercial granites, Radiat. Meas. 39, 245-253. [CrossRef] [Google Scholar]
  • Anjos R.M., Ayub J., Cid A.S., Cardoso R., Lacerda T. (2011) External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites, J. Environ. Radioact. 102 (11), 1055-1061. [CrossRef] [PubMed] [Google Scholar]
  • Arafa W. (2004) Specific activity and hazards of granite samples collected from the eastern desert of Egypt, J. Environ. Radioact. 75, 315-327. [CrossRef] [PubMed] [Google Scholar]
  • Asghar M., Tufail M., Javed S., Abid A., Waqas M. (2008) Radiological implications of granite of Pakistan, J. Radiol. Prot. 28, 387-399. [CrossRef] [PubMed] [Google Scholar]
  • Benke R.R., Kearfott K.J. (1999) Soil sample moisture content as a function of time during oven drying for gamma ray spectroscopic measurements, Nucl. Instrum. Methods Phys. Res. A 422, 817-819. [CrossRef] [Google Scholar]
  • Beretka J., Matthew P.J. (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Phys. 48, 87-95. [CrossRef] [PubMed] [Google Scholar]
  • Chen C.J., Lin Y.M. (1996) Assessment of building materials for compliance with regulations of ROC, Environ. Int. 22, 221-226. [CrossRef] [Google Scholar]
  • El-Arabi A.M. (2007) 226Ra, 232Th and 40K concentrations in igneous rocks from eastern desert, Egypt and its radiological implications, Radiat. Meas. 42, 94-100. [CrossRef] [Google Scholar]
  • El-Shershaby A. (2002) Study of radioactivity levels in granite of Gable-Gattar II in the north eastern desert of Egypt, Appl. Radiat. Isotopes 57, 131-135. [Google Scholar]
  • EC (1999) European Commission, Radiation Protection 112: Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. [Google Scholar]
  • Faure G. (1986) Principles of Isotope Geology, 2nd edn. Wiley, New York. [Google Scholar]
  • Guillén J., Tejado J.J., Baeza A., Corbacho J.A., Muñoz J.G. (2014) Assessment of radiological hazard of commercial granites from Extremadura (Spain), J. Environ. Radioact. 132, 81-88. [CrossRef] [PubMed] [Google Scholar]
  • Ibrahim N. (1999) Natural activities of 238U, 232Th and 40K in Building Materials, J. Environ. Radioact. 43, 255-258. [Google Scholar]
  • ICRP Publication 65 (1994) International Commission on radiation protection against Radon-222 at home and at work., Ann. ICRP 23 (2). [Google Scholar]
  • Jahangiri A., Ashrafi S. (2011) Natural radioactivity of granites used as building materials in Iran, J. Environ. Stud. 36, 4. [Google Scholar]
  • Kazmi A., Khan R.A. (1973) The report on the geology, mineralogy and mineral resources of Nagarparkar, Pakistan. Geol. Surv. Pakistan, Information release 64, 44-56. [Google Scholar]
  • Khaleel M.T. (2013) Measurement of natural radioactivity and radon exhalation rate in granite samples used in Palestinian buildings, Arab J. Sci. Eng. 38, 201-207. [CrossRef] [Google Scholar]
  • Khan K., Khan H., Tufail M., Khatibeh A.H., Ahmad N. (1998) Radiometric analysis of Hazara phosphate rocks and fertilizers in Pakistan, Egypt. J. Environ. Radioact. 38, 77-384. [CrossRef] [Google Scholar]
  • Kitto M.E., Haines D.K., Menia T.A. (2009) Assessment of gamma-ray emissions from natural and manmade decorative stones, J. Radioanal. Nucl. Chem. 282, 409-413. [CrossRef] [Google Scholar]
  • Knoll G.F. (2000) Radiation Detection and Measurement, 3rd edn. Wiley, New York. [Google Scholar]
  • Krieger R. (1981) Radioactivity of construction materials, BetonwerkFertigtiel Tech. 47, 468. [Google Scholar]
  • Krisiuk E.M., Tarasov S.I., Shamov V.P., Shalak N.I., Lisa Chenko E.P., Gomelsky L.G. (1971) A study on building materials. Research Institute of Radiation Hygiene, Leningrad. [Google Scholar]
  • Krstić D., Nikezić D., Stevanović N., Vuĉić D. (2007) Radioactivity of some domestic and imported building materials from South Eastern Europe, Radiat. Meas. 42, 1731-1736. [CrossRef] [Google Scholar]
  • Le S.C., Kein C.K., Lee D.M., Kang H.D. (2001) Natural radionuclides content and radon exhalation rates in building material used in South Korea, Radiat. Prot. Dosim. 94, 269-274. [CrossRef] [Google Scholar]
  • Mao Y., Liu Y., Fu Y., Liu L. (2006) Physical models and limits of radionuclides for decorative building materials, Health Phys. 90 (5), 471-476. [CrossRef] [PubMed] [Google Scholar]
  • Menager M.T., Heath M.J., Ivanovich M., Montjotin C., Barillon C.R., Camp J., Hasler S.E. (1993) Migration of uranium from uranium-mineralized fractures into rock matrix in granite: implications for radionuclide transport around a radioactive waste repository, Radiochim. Acta 66/67, 47-83. [Google Scholar]
  • National Cancer Institute, USA (2009) Surveillance, Epidemiology, and End Results (SEER) Program. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute works to provide information on cancer statistics in an effort to reduce the burden of cancer among the U.S. population. [Google Scholar]
  • Nordic (2000) Naturally Occurring Radiation in the Nordic Countries: Recommendations. The Flag-Book Series; The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, Reykjavik. [Google Scholar]
  • Orgun Y., Altinsoy N., Gultekin A.H., Karahan G., Celebi N. (2005) Natural radioactivity levels in granitic plutons and ground waters in Southeast part of Eskisehir, Turkey, Appl. Radiat. Isotopes 63, 267-275. [CrossRef] [Google Scholar]
  • Otoo F., Adukpo O.K., Darko E.O., Emi-Reynolds G., Awudu A.R., Ahiamadjie H., Tandoh J.B., Hasford F., Adu S., Gyampo O. (2011) Assessment of natural radioactive materials in building materials used along the coast of Central Region of Ghana, Res. J. Environ. Earth Sci. 3 (3), 261-268. [Google Scholar]
  • Pathan M.T., Rais A. (1975) Preliminary report of the investigation of Nagarparkar igneous complex, Sindh University Journal of Science 1, 93-97. [Google Scholar]
  • Pavlidou S., Koroneos A., Papastefanou C., Christofides G., Stoulos S., Vavelides M. (2006) Natural radioactivity of granites used as building materials, J. Environ. Radioact. 89, 48-60. [CrossRef] [PubMed] [Google Scholar]
  • Quindos L.S., Fernandez P.L., Soto J. (1987) Building Materials as Source of Exposure in Houses, Vol. 2, p. 365. Institute for Water, Soil and Air Hygiene, Berlin. [Google Scholar]
  • Qureshi A.A., Jadoon I.K., Wajid A.A., Attique A., Anees M., Manzoor S., Waheed A., Masood A., Tubassam A. (2014) Study of Natural Radioactivity in Mansehra Granite, Pakistan: Environmental Concerns, Radiat. Prot. Dosim. 159 (4), 466-475. [CrossRef] [Google Scholar]
  • Qureshi A.A., Sultan A., Rashid A., Ali M., Waheed A., Manzoor S., Baloch M.A., Matiullah, Batool, S., Khan H.A. (2012) Geological and radiological studies of the Mount Arafat, Mekkah, Saudi Arabia, J. Radioanal. Nucl. Chem. 293, 955-963. [CrossRef] [Google Scholar]
  • Sannappa J., Ningappa C., Prakash K.N. (2010) Natural radioactivity levels in granite regions of Karnataka State, Indian J. Pure Appl. Phys. 48, 817-819. [Google Scholar]
  • Stoulos S., Manolopoulou M., Papastefanou C. (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece, J. Environ. Radioact. 69, 225-240. [CrossRef] [PubMed] [Google Scholar]
  • Taskin H., Karavus M., Topuzoglu P., Ay A., Hindiroglu S., Karahan G. (2009) Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey, J. Environ. Radioact. 100, 49-53. [CrossRef] [PubMed] [Google Scholar]
  • Trevisi R., Risica S., Alessandro M.D., Paradiso D., Nuccetelli C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance, J. Environ. Radioact. 105, 11-20. [CrossRef] [PubMed] [Google Scholar]
  • Tufail M., Akhtar N., Waqas M. (2006) Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren soils of Faisalabad in Pakistan, Radiat. Meas. 41, 443-451. [CrossRef] [Google Scholar]
  • Tufail M., Akhtar N., Sabiha-Javied, Hamid T. (2007) Natural radioactivity hazards of building bricks fabricated from saline soil of two districts of Pakistan, J. Radiol. Prot. 27, 481-492. [Google Scholar]
  • Turhan (2012) Estimation of possible radiological hazards from natural radioactivity in commercially-utilized ornamental and countertops granite tiles, Annals of Nuclear Energy 44, 34-39. [CrossRef] [Google Scholar]
  • Tzortzis M., Tsertos H., Christofides S., Christodoulides G. (2003) Gamma radiation measurements and dose rates in commercially used natural tiling rocks (granites), J. Environ. Radioact. 70, 223-235. [CrossRef] [PubMed] [Google Scholar]
  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation Sources and effects of ionizing radiation, Report to United Nations, New York. [Google Scholar]
  • Wynne A.B. (1867) Memoirs on the Geology of Kutch, Geological Survey of India, Memoir.9:293. [Google Scholar]
  • Xinwei L., Linquing W., Xiadon J. (2006) Radiometric analysis of Chinese commercial granites, J. Radioanal. Nucl. Chem. 267, 669-673. [CrossRef] [Google Scholar]
  • Xinwei et al. (2008). Radiat. Prot. Dosim. 128, 471-476. [Google Scholar]
  • Yang Y.X., Wu X.M., Jiang Z.-Y. (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China, Appl. Radiat. Isotopes 63, 255-259. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.