Free Access
Volume 51, Number 3, Juillet-Septembre 2016
Page(s) 179 - 186
Published online 04 July 2016
  • Abramson D.H., Jereb B., Ellsworth R.M. (1981) External beam radiation for retinoblastoma, Bull. New York Acad. Med. 57, 787-803. [Google Scholar]
  • Al-Beteri A.A., Raeside D.E. (1992) Optimal electron-beam treatment planning for retinoblastoma using a new three-dimensional Monte Carlo-based treatment planning system, Med. Phys. 19, 125. [CrossRef] [PubMed] [Google Scholar]
  • Behrens R., Dietze G., Zankl M. (2009) Dose conversion coefficients for electron exposure of the human eye lens, Phys. Med. Biol. 54, 4069-4087. [CrossRef] [PubMed] [Google Scholar]
  • Blach L.E., McCormick B., Abramson D.H. (1996) External beam radiation therapy and retinoblastoma: long-term results in the comparison of two techniques, Int. J. Radiat. Oncol. 35, 45-51. [CrossRef] [Google Scholar]
  • Charles M.W., Brown N. (1975) Dimensions of the human eye relevant to radiation protection, Phys. Med. Biol. 20, 202-218. [CrossRef] [PubMed] [Google Scholar]
  • Ding G.X., Cygler J.E., Christine W.Y., Kalach N.I., Daskalov G. (2005) Comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm, Int. J. Radiat. Oncol. Biol. Phys. 63, 622-633. [CrossRef] [PubMed] [Google Scholar]
  • Ding G.X., Duggan D.M., Coffey C.W., Shokrani P., Cygler J.E. (2006) First macro Monte Carlo based commercial dose calculation module for electron beam treatment planning–new issues for clinical consideration, Phys. Med. Biol. 51, 2781-2799. [CrossRef] [PubMed] [Google Scholar]
  • Di Venanzio C., Marinelli M., Tonnetti A., Verona-Rinati G., Bagalà P., Falco M.D., Guerra A.S., Pimpinella M. (2015) Comparison between small radiation therapy electron beams collimated by Cerrobend and tubular applicators, J. Appl. Clin. Med. Phys. 16, 329-335. [Google Scholar]
  • Drzymala R.E., Mohan R., Brewster L., Chu J., Goitein M., Harms W., Urie M. (1991) Dose-volume histograms, Int. J. Radiat. Oncol. 21, 71-78. [CrossRef] [Google Scholar]
  • Farajollahi A.R., Bouzarjomehri F., Kiani M. (2015) Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks, J. Biomed. Phys. Eng. 5, 77. [PubMed] [Google Scholar]
  • Goldman H., Liechti A. (1938) Experimental investigation of the etiology of roentgen cataracts, Arch. F. Ophth. 138, 723. [Google Scholar]
  • Han E.Y., Bolch W.E., Eckerman K.F. (2006) Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema, Health Phys. 90, 337-356. [CrossRef] [PubMed] [Google Scholar]
  • Halperin E.C., Waser D.E., Perez C.A., Brady L.W. (2013) Clinical radiation oncology. In: Perez & Brady’s principles and practice of radiation oncology. pp. 626-1752. Lippincott Williams & Wilkins. Philadelphia, New York, London. [Google Scholar]
  • Höcht S., Stark R., Seiler F., Heufelder J., Bechrakis N.E., Cordini D., Marnitz S., Kluge H., Foerster M.H., Hinkelbein W. (2005) Proton or Stereotactic Photon Irradiation for Posterior Uveal Melanoma?. Strahlenther Onkol. 181, 783-788. [CrossRef] [PubMed] [Google Scholar]
  • IAEA (2004) Technical reports series No.430. Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. pp. 47-57. [Google Scholar]
  • Inoue T., Masai N., Ryoong-Jin O.H., Shiomi H., Hashida N. (2014) Adaptive replanning intensity-modulated radiotherapy for choroidal metastasis of breast cancer using optical coherence tomography, J. Radiat. Res. 55, 502-508. [CrossRef] [PubMed] [Google Scholar]
  • Kramer R., Zankl M., Williams G., Drexler G. (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: Part I. The male (ADAM) and Female (EVA) adult mathematical phantoms. GSF-Report S-885. [Google Scholar]
  • Lee C.T., Bilton S.D., Famiglietti R.M., Riley B.A., Mahajan A., Chang E.L., Maor M.H., Woo S.Y., Cox J.D., Smith A.R. (2005) Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques?. Int. J. Radiat. Oncol. 63, 362-372. [CrossRef] [Google Scholar]
  • Lesperance M., Inglis-Whalen M., Thomson R.M. (2014) Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom, Med. Phys. 41, 021717. [CrossRef] [PubMed] [Google Scholar]
  • Mohammadi N., Miri-Hakimabad H., Rafat-Motavalli L., Akbari F., Abdollahi S. (2015) Patient-specific voxel phantom dosimetry during the prostate treatment with high-energy linac, J. Radioanal. Nucl. Chem. 304, 785-792. [CrossRef] [Google Scholar]
  • Muller K., Nowak P.J., de Pan C., Marijnissen J.P., Paridaens D.A., Levendag P., Luyten G.P. (2005) Effectiveness of fractionated stereotactic radiotherapy for uveal melanoma, Int. J. Radiat. Oncol. Biol. Phys. 63, 116-122. [CrossRef] [PubMed] [Google Scholar]
  • Nogueira P., Zankl M., Schlattl H., Vaz P. (2011) Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations, Phys. Med. Biol. 56, 6919-6934. [CrossRef] [PubMed] [Google Scholar]
  • Pelowitz D. (2008) MCNPX User’s Manual, Version 2.6.0. Los Alamos National Laboratory, Los Alamos, NM, USA. [Google Scholar]
  • Righi S., Karaj E., Felici G., Di Martino F. (2013) Dosimetric characteristics of electron beams produced by two mobile accelerators, Novac7 and Liac, for intraoperative radiation therapy through Monte Carlo simulation, J. Appl. Clin. Med. Phys. 14, 1-17. [PubMed] [Google Scholar]
  • Rykers K., Uden G., Thompson V. (2003) Orbital lymphoma: a simple treatment using electrons, Med. Dosim. 28, 95-98. [CrossRef] [PubMed] [Google Scholar]
  • Sakhaee M., Vejdani-Noghreiyan A., Ebrahimi-Khankook A. (2015) A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons, Radiat. Phys. Chem. 106, 61-67. [CrossRef] [Google Scholar]
  • Stannard C., Sauerwein W., Maree G., Lecuona K. (2013) Radiotherapy for ocular tumours, Eye 27, 119-127. [CrossRef] [Google Scholar]
  • Swakon J., Olko P., Adamczyk D., Cywicka-Jakiel T., Dabrowska J., Dulny B., Grzanka L., Horwacik T., Kajdrowicz T., Michalec B., Nowak T. (2010) Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow, Radiat. Meas. 45, 1469-1471. [CrossRef] [Google Scholar]
  • Taherkhani A., Mohammadi M., Saboori M.S., Changizi V. (2010) Evaluation of the physical characteristic of Cerrobend blocks used for radiation therapy, Int. J. Radiat. Res. 8, 93-101. [Google Scholar]
  • Terasawa T., Dvorak T., Ip S., Raman G., Lau J., Trikalinos T.A. (2009) Systematic review: charged-particle radiation therapy for cancer, Ann. Intern. Med. 151, 556-565. [CrossRef] [PubMed] [Google Scholar]
  • Voke J. (1999) Radiation effects on the eye, part 1: infrared radiation effects on ocular tissue, Optom. Today 5, 22-28. [Google Scholar]
  • Weber D.C. et al. (2005) Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study, Int. J. Radiat. Oncol. 63, 373-384. [CrossRef] [Google Scholar]
  • Worgul B.V., Merriam G.R. Jr (1980) The lens epithelium and radiation cataracts: II. interphase death in the meridional rows? Radiat. Res. 84, 115-121. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.