Free Access
Issue |
Radioprotection
Volume 49, Number 4, Octobre-Décembre 2014
|
|
---|---|---|
Page(s) | 261 - 268 | |
DOI | https://doi.org/10.1051/radiopro/2014016 | |
Published online | 26 September 2014 |
- ASN (2012) Éléments de doctrine pour la gestion post-accidentelle d’un accident nucléaire – Version finale du 5 octobre 2012. Comité Directeur pour la gestion de la phase post-accidentelle d’un accident nucléaire (CODIRPA). http://www.asn.fr/index.php/Bas-de-page/Sujet-Connexes/Gestionpost-accidentelle/Comite-directeur-gestion-de-phase-post-accidentelle/Elements-de-doctrinepour-la-gestion-post-accidentelle-d-un-accident-nucleaire-5-octobre-2012. [Google Scholar]
- Boddy K. (1967) A high sensitivity shadow-shield whole body monitor with scanning-bed and tilting chair geometries, incorporated in a mobile laboratory, Br. J. Radiol. 40 (476), 631-637. [CrossRef] [PubMed] [Google Scholar]
- Bondarkov M.D., Maksimenko A.M., Gaschak S.P., Zheltonozhsky V.A., Jannik G.T., Farfán E.B. (2001) Method for simultaneous 90Sr and 137Cs in vivo measurements of small animals and other environmental media developed for the conditions of the Chernobyl Exclusion Zone, Health Phys. 101 (4), 383-392. [CrossRef] [Google Scholar]
- Broggio D. et al. (2012) Monte Carlo modelling for the in vivo lung monitoring of enriched uranium: Results of an international comparison, Radiat. Meas. 47 (7), 492-500. [CrossRef] [Google Scholar]
- Castagnet X., Amabile J.C., Cazoulat A., Lecompte Y., de Carbonnières H., Laroche P. (2007) Diagnosis of internal radionuclide contamination by mobile laboratories, Radiat. Prot. Dosim. 125 (1-4), 469-471. [CrossRef] [Google Scholar]
- Dantas B.M., Lucena E.A., Dantas A.L.A., Santos M.S., Julião L.Q.C., Melo D.R., Sousa W.O., Fernandes P.C., Mesquita S.A. (2010) A mobile bioassay laboratory for the assessment of internal doses based on in vivo and in vitro measurements, Health Phys. 99 (4), 449-452. [CrossRef] [PubMed] [Google Scholar]
- Eckerman K.F., Leggett R.W., Cristy M., Nelson C.B., Ryman J.C., Sjoreen A.L., Ward R.C. (2001) DCAL: User’s Guide to the DCAL System. Oak Ridge National Laboratory Report, ORNL/TM-2001/190. [Google Scholar]
- Franck D., Broggio D., Challeton-de Vathaire C., Moya X., Parre F., Viltard D., Agarande M. (2012) Development of a fleet of intervention mobile unit for radiological accident monitoring of internal contamination. In: Proceedings of IRPA13, May 2012, Glasgow (full paper TS2b.5, available at http://www.irpa13glasgow.com/information/downloads/). [Google Scholar]
- GTN5 (1989) Détermination du seuil et de la limite de détection en spectrométrie gamma. Rapport du Groupe de travail de normalisation No. 5 du Comité d’instrumentation et de radioprotection, CEA-R-5506. [Google Scholar]
- Hille R., Hill P., Heinemann K., Ramzaev V., Barkovski A., Konoplia V., Neth R. (2000) Current development of the human and environmental contamination in the Bryansk-Gomel Spot after the Chernobyl accident, Radiat. Environ. Biophys. 39 (2), 99-109. [CrossRef] [PubMed] [Google Scholar]
- ICRP Publication 56 (1990) Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 1, Ann. ICRP 20 (2). [Google Scholar]
- ICRP Publication 67 (1993) Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 2 Ingestion Dose Coefficients, Ann. ICRP 23 (3-4). [Google Scholar]
- ICRP Publication 68 (1994) Dose Coefficients for Intakes of Radionuclides by Workers, Ann. ICRP 24 (4). [Google Scholar]
- ICRP Publication 78 (1997) Individual monitoring for internal exposure of workers, Ann. ICRP 27 (3-4). [Google Scholar]
- ICRU Report 48 (1992) Phantoms and Computational Models in Therapy. Diagnosis and Protection, Bethesda, MD, ICRU. [Google Scholar]
- Kovtun A.N., Firsanov V.B., Fominykh V.I., Isaakyan G.A. (2000) Metrological Parameters of the Unified Caibration Whole Body Phantom with Gamma-emiting Radionuclides, Radiat. Prot. Dosim. 89, 239-242. [CrossRef] [Google Scholar]
- Lamart S., Blanchardon E., Molokanov A., Kramer G.H., Broggio D., Franck D. (2009) Study of the influence of radionuclide biokinetics on the efficiency of in vivo counting using Monte Carlo simulation, Health Phys. 96 (5), 558-567. [CrossRef] [PubMed] [Google Scholar]
- Lopez M.A., Broggio D., Capello K., Cardenas-Mendez E., El-Faramawy N., Franck D., James A.C., Kramer G.H., Lacerenza G., Lynch T.P., Navarro J.F., Navarro T., Perez B., Rühm W., Tolmachev S.Y., Weitzenegger E. (2011) EURADOS intercomparison on measurements and Monte Carlo modelling for the assessment of Americium in a USTUR leg phantom, Radiat. Prot. Dosim. 144 (1-4), 295-299. [CrossRef] [Google Scholar]
- Pellerin P., Moroni J.-P. (1969) Le laboratoire mobile de spectrométrie humaine du SCPRI. In: Handling of radiation accidents, Proceedings of a symposium, 19-23 May 1969, Vienna (IAEA, Eds.), pp. 317-325. [Google Scholar]
- Ramzaev V., Yonehara H., Hille R., Barkovsky A., Mishine A., Sahoo S.K., Kurotaki K., Uchiyama M. (2006) Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996–2003, J. Environ. Radioact. 85 (2-3), 205-227. [CrossRef] [PubMed] [Google Scholar]
- Straume T., Anspaugh L.R., Marchetti A.A., Voigt G., Minenko V., Gu F., Men P., Trofimik S., Tretyakevich S., Drozdovitch V., Shagalova E., Zhukova O., Germenchuk M., Berlovich S. (2006) Measurement of 129I and 137Cs in soils from Belarus and reconstruction of 131I deposition from the Chernobyl accident, Health Phys. 91 (1), 7-19. [CrossRef] [PubMed] [Google Scholar]
- Talerko N. (2005) Reconstruction of 131I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling, J. Environ. Radioact. 84 (3), 343-362. [CrossRef] [PubMed] [Google Scholar]
- Terada H., Katata G., Chino M., Nagai H. (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion, J. Environ. Radioact. 112, 141-154. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.