Free Access
Volume 48, Number 3, Juillet-Septembre 2013
Page(s) 431 - 443
Section Articles
Published online 11 July 2013
  • Akkurt I. (2007) Effective atomic numbers for Fe-Mn alloy using transmission experiment, Chin. Phys. Lett. 24 (10), 2812-2814. [CrossRef] [Google Scholar]
  • Akkurt I. (2009) Effective atomic and electron numbers of some steels at different energies, Ann. Nucl. Energy 36 (11-12), 1702-1705. [CrossRef] [Google Scholar]
  • Bastug A., Gurol A., Icell O., Yusuf S. (2010) Effective atomic numbers of some composite mixutes including borax, Ann. Nucl. Energy 37, 927-933. [CrossRef] [Google Scholar]
  • Berger M.J., Hubbell J.H. (1987/99) XCOM: Photon Cross Sections Database, Web Version 1.2, available at, National Institute of Standards and Technology, Gaithersburg, MD 20, 899, USA. [Google Scholar]
  • Demir D., Turşucu A., Oznülüer T. (2012) Studies on mass attenuation coefficient, effective atomic number and electron density of some vitamin, Radiat. Environ. Biophys. 51 (4), 469-475. [CrossRef] [PubMed] [Google Scholar]
  • El-Kateb A.H., Rizk R.A.M., Abdul-Kader A.M. (2000) Determination of atomic cross-sections and effective atomic numbers for some alloys, Ann. Nucl. Energy 27, 1333-1343. [CrossRef] [Google Scholar]
  • Fakarudin A.R.F., M. Iqbal S., Nor Pa’iza M.H., Ismail M. (2011) Mass attenuation coefficients, effective atomic numbers and electron densities of stainless steel and carbon steel with different energies, Journal Sains Nuklear Malaysia 23 (2), 19-25. [Google Scholar]
  • Gerward L., Guilbert N., Jensen K.B., Levring H. (2001) X-ray absorption in matter. Reengineering XCOM, J. Radiat. Phys. Chem. 60, 23-24. [CrossRef] [Google Scholar]
  • Gerward L., Guilbert N., Jensen K.B., Levring H. (2004) WinXcom-a program for calculating X-ray attenuation coefficients, J. Radiat. Phys. Chem. 71, 653-654. [CrossRef] [Google Scholar]
  • Han I., Demir L. (2009) Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies, Nucl. Instrum. Methods B 267, 3-8. [CrossRef] [Google Scholar]
  • Hine G.J. (1952) Use wildcard to add more than one file at a time, Phys. Rev. 85, 752-755. [Google Scholar]
  • Hubbell J.H., Veigele W.M., Briggs E.A., Brown R.T., Cromer D.T., Howerton R.J. (1975) Atomic form factors, incoherent scattering functions, and photon scattering cross sections, J. Phys. Chem. Ref. Data 4 (3), 471-538. [NASA ADS] [CrossRef] [Google Scholar]
  • İçelli O., Salih E., İsmail H.K., Güven Ç. (2005) Effective atomic numbers for CoCuNi alloys using transmission experiment, J. Quant. Spectrosc. Radiat. Trans. 91, 485-491. [CrossRef] [Google Scholar]
  • Kaewkhao J., Laopaiboon J., Chewpraditkul W. (2008) Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Trans. 109, 1260-1265. [CrossRef] [Google Scholar]
  • Manohara S.R., Hanagodimath S.M., Thind K.S., Gerward L. (2008) On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Meth. B 266, 3906-3912. [Google Scholar]
  • Medhat M.E. (2011) Studies on effective atomic numbers and electron densities in different solid state track detectors in the energy range 1 keV–100 GeV, Ann. Nucl. Energy 38 (6), 1252-1263. [CrossRef] [Google Scholar]
  • Michael E.W., Tyler B.C. (2011) Atomic weight of elements 2009, IUPAC Technical Report, Pure Appl. Chem. 83 (2), 359-396. [Google Scholar]
  • Murty V.R.K., Winkoun D.P., Devan K.R.S. (2000) Effective atomic numbers for W/Cu alloy using transmission experiments, Appl. Radiat. Isotopes 53, 945-948. [CrossRef] [Google Scholar]
  • Prasad S.G., Parthasaradhi K., Bloomer W.D. (1998) Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges, Radiat. Phys. Chem. 53, 449-453. [CrossRef] [Google Scholar]
  • Prasanna S.K., Kumar T.K. (2012) Differential incoherent scattering cross sections and effective atomic numbers of steels alloys in the energy region 279.1 keV to 1115.5 keV. In: Proceedings NSRP-19, Dec 12-14, Mamallapuram, Tamilnadu, India, pp. 28-30. [Google Scholar]
  • Shivaliga G., Krishnaveni S., Yashoda, Umesh T.K., Ramakrishna G. (2004) Mass attenuation coefficients, effective atomic number and electron densities of thermolumininescent dosimetric compounds, PRAMANA 63 (3), 529-541. [Google Scholar]
  • Singh V.P., Badiger N.M. (2012a), Photon interaction parameters of some spin ice compound materials, Int. J. Nuclear Energy Science and Technology 7 (1), 57-74. [CrossRef] [Google Scholar]
  • Singh V.P., Badiger N.M. (2012b) Effective atomic numbers, electron densities and tissue equivalence of some gases and mixtures for dosemetry of radiation detectors, Nuclear Technology & Radiation Protection 27 (2), 117-124. [CrossRef] [Google Scholar]
  • Singh V.P., Badiger N.M. (2013) Study of Effective Atomic Numbers and Electron Densities, Kerma of Alcohols, Phantom and Human Organs and Tissues Substitutes, Nuclear Technology & Radiation Protection (accepted for publication). [Google Scholar]
  • Taylor M.L., Smith R.L., Dossing F., Franich R.D. (2012) Robust calculation of effective atomic numbers: The Auto-Zeff software, Med. Phys. 39, 1769-1778. [CrossRef] [PubMed] [Google Scholar]
  • Woods J. (1982) Computational Methods in Reactor Shielding, Pergamon Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.