Issue |
Radioprotection
Volume 51, December 2016
Innovative integrated tools and platforms for radiological emergency preparedness and post-accident response in Europe. Key results of the PREPARE European research project
|
|
---|---|---|
Page(s) | S113 - S115 | |
Section | Enhancing of the existing decision support systems with capabilities of importance – Extension of DSSs modules regarding particles | |
DOI | https://doi.org/10.1051/radiopro/2016044 | |
Published online | 23 December 2016 |
Article
Dispersion and fall out of heavier particles
DTU – Technical University of Denmark, Department of Wind Energy,
Frederiksborgvej 399,
DK 4000
Roskilde, Denmark
Nuclear accidents have so far been expected to release gasses and aerosols, but other CBRN events and also nuclear accidents with release of core particles can be expected to also release larger particles to the atmosphere. If not so large and heavy, that they fall to the ground immediately they may like gasses and aerosols be transported more or less far by the wind. The present paper focuses on the growth of plumes of such particles larger and heavier than aerosols and transported by the wind. Implementation in existing decision support puff dispersion programs requires a parameterization of this growth, and two reasonable describing parameterizations have been found, one in the literature, one proposed here, and both are compared to experimental work found in the literature. The parameterization from the literature has been implemented in the dispersion program RIMPUFF, which has subsequently shown that the effect on fall out to a large extent overrules the effect on the dispersion of such particles.
Key words: dispersion simulation / heavy particles / decision support / ARGOS / RODOS
© EDP Sciences 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.