Open Access
Numéro
Radioprotection
Volume 60, Numéro 3, Juillet-Septembre 2025
Page(s) 285 - 292
DOI https://doi.org/10.1051/radiopro/2025004
Publié en ligne 15 septembre 2025
  • Berthel E, Ferlazzo ML, Devic C, Bourguignon M, Foray N. 2019. What does the history of research on the repair of DNA double-strand breaks tell us?—a comprehensive review of human radiosensitivity. Int J Mol Sci. 20. https://doi.org/10.3390/ijms20215339 [Google Scholar]
  • Cai Z, Chen Z, Bailey KE, Scollard DA, Reilly RM, Vallis KA. 2008. Relationship between induction of phosphorylated H2AX and survival in breast cancer cells exposed to 111In-DTPA-hEGF. J Nucl Med 49: 1353–1361. [Google Scholar]
  • Chen Z, Wakabayashi H, Kuroda R, Mori H, Hiromasa T, Kayano D, Kinuya S. 2024. Radiation exposure lymphocyte damage assessed by γ-H2AX level using flow cytometry. Sci Rep. 14. https://doi.org/10.1038/s41598-024-54986-x [Google Scholar]
  • Denoyer D, Lobachevsky P, Jackson P, Thompson M, Martin OA, Hicks RJ. 2015. Analysis of177Lu-DOTA-octreotate therapy-induced DNA damage in peripheral blood lymphocytes of patients with neuroendocrine tumors. J Nucl Med 56: 505–511. [Google Scholar]
  • Derlin T, Bogdanova N, Ohlendorf F, Ramachandran D, Werner RA, Ross TL, Christiansen H, Bengel FM, Henkenberens C. 2021. Assessment of γ-H2AX and 53BP1 foci in peripheral blood lymphocytes to predict subclinical hematotoxicity and response in somatostatin receptor-targeted radionuclide therapy for advanced gastroenteropancreatic neuroendocrine tumors. Cancers (Basel). 13. https://doi.org/10.3390/cancers13071516 [Google Scholar]
  • Dewaraja Y, Frey ED, Hobbs R, Sc D, Xiao, Y. 2022. Current status of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys 109: 891–901. [Google Scholar]
  • Djuzenova CS, Elsner I, Katzer A, Worschech E, Distel LV, Flentje M, Polat B. 2013. Radiosensitivity in breast cancer assessed by the histone γ-H2AX and 53BP1 foci. Radiat Oncol 8: 1–12. [Google Scholar]
  • Djuzenova CS, Zimmermann M, Katzer A, Fiedler V, Distel LV, Gasser M, Waaga-Gasser A-M., Flentje M, Polat B. 2015. A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome. BMC Cancer 15: 1–10. [Google Scholar]
  • Ferlazzo ML, Bourguignon M, Foray N. 2017. Functional assays for individual radiosensitivity: a critical review. Semin Radiat Oncol 27: 310–315. [Google Scholar]
  • Fu H, Huang J, Zhao T, Wang H, Chen Y, Xu W, Pang Y, Guo W, Sun L, Wu H, Xu P, Su B, Zhang J, Chen X, Chen H. 2023. Fibroblast activation protein-targeted radioligand therapy with 177Lu-EB-FAPI for metastatic radioiodine-refractory thyroid cancer: First-in-human, dose-escalation study. Clin Cancer Res 29: 4740–4750. [Google Scholar]
  • Gong F, Miller KM. 2019. Histone methylation and the DNA damage response. Mutat Res − Rev 780: 37–47. [Google Scholar]
  • Huang R-X., Zhou P-K. 2020. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 5. https://doi.org/10.1038/s41392-020-0150-x [Google Scholar]
  • Kawashima S, Kawaguchi N, Taniguchi K, Tashiro K, Komura K, Tanaka T, Inomata Y, Imai Y, Tanaka R, Yamamoto M, Inoue Y, Lee SW, Kawai M, Tanaka K, Okuda J, Uchiyama K. 2020. γ-H2AX as a potential indicator of radiosensitivity in colorectal cancer cells. Oncol Lett https://doi.org/10.3892/ol.2020.11788 [Google Scholar]
  • Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. 2023. DNA damage by radiopharmaceuticals and mechanisms of cellular repair. Pharmaceutics 15: 1–26. [Google Scholar]
  • Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V, Reiners C, Scherthan H. 2010. In vivo formation of γ-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 51: 1318–1325. [Google Scholar]
  • Li P, Du C-r, Xu W-c, Shi Z, Zhang Q, Li Z. 2013 Correlation of dynamic changes in γ-H2AX expression in peripheral blood lymphocytes from head and neck cancer patients with radiation-induced oral mucositis. Radiat Oncol 8: 155. [Google Scholar]
  • Liu T-T., Li C-F., Tan K-T., Jan Y-H., Lee P-H., Huang C-H., Yu S, Tsao C, Wang J, Huang H. 2022. Characterization of aberrations in DNA damage repair pathways in gastrointestinal stromal tumors: Cancers (Basel) 1–22. [Google Scholar]
  • Lobachevsky P, Leong T, Daly P, Smith J, Best N, Tomaszewski J, Thompson ER, Li N, Campbell IG, Martin RF, Martin OA. 2016. Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 383: 212–219. [Google Scholar]
  • Mahmoud AS, Hassan AME, Ali AA, Hassan NM, Yousif AA, Elbashir FE, Omer A, Abdalla OM. 2022. Detection of radiation‑induced DNA damage in breast cancer using gamma H2AX biomarker: a possible correlation with their body mass index. Genome Integr 13. [Google Scholar]
  • Purnami S, Suvifan VA, Ramadhani D, Lusiyanti Y, Darlina D, Rahajeng N, Syaifudin M, Pujianto DA, Widowati R. 2023. Phosphorylated Ataxia Telangiectasia Mutated (pATM) Enzyme-Linked Immunosorbent Assay (ELISA) for predicting radiation induces normal tissue toxicity in radiotherapy patients: a systematic review. Indones J Cancer 17: 235. [Google Scholar]
  • Raavi V, Perumal FD, Paul S. 2021. Potential application of γ-H2AX as a biodosimetry tool for radiation triage. Mutat Res − Rev 787: 108350. [Google Scholar]
  • Ramadhani D, Syaifudin M, Purnami S, Naroeni A. 2020. The use of image processing and analysis in automated biological dosimetry. Atom Indones 46: 127–133. [Google Scholar]
  • Richardson RB. 2011. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults. Int J Rad Biol 87: 343–359. [Google Scholar]
  • Sak A, Grehl S, Erichsen P, Engelhard M, Grannaß A, Levegrün S, Stuschke M. 2007. Gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose-distribution, irradiated site and time from start of treatment. Int J Rad Biol 83: 639–652. [Google Scholar]
  • Sgouros G, Bodei L, McDevitt MR, Nedrow JR. 2020. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov 19: 589–608. [Google Scholar]
  • Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. 2023. Histone post-translational modification and the DNA damage response. Genes Dis 10: 1429–1444. [Google Scholar]
  • Srivastava N, Gochhait S, de Boer P, Bamezai RNK. 2009. Role of H2AX in DNA damage response and human cancers. Mutat Res − Rev 681: 180–188. [Google Scholar]
  • Vinnikov V, Belyakov O. 2022. Clinical applications of biological dosimetry in patients exposed to low dose radiation due to radiological, imaging or nuclear medicine procedures. Semin Nucl Med. 52: 114–139. [Google Scholar]
  • Widjaja L, Werner RA, Krischke E, Christiansen H, Bengel FM, Bogdanova N, Derlin T. 2022. Individual radiosensitivity reflected by γ-H2AX and 53BP1 foci predicts outcome in PSMA-targeted radioligand therapy. Eur J Nucl Med Mol Imaging https://doi.org/10.1007/s00259-022-05974-8 [Google Scholar]
  • Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C. 2015. DNA damage response assessments in human tumor samples provide functional biomarkers of radiosensitivity. Semin Radiat Oncol 25: 237–250. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.