Open Access
Numéro |
Radioprotection
Volume 55, May 2020
Coping with uncertainties for improved modelling and decision making in nuclear emergencies. Key results of the CONFIDENCE European research project
|
|
---|---|---|
Page(s) | S101 - S108 | |
Section | FOODCHAIN IMPROVEMENTS | |
DOI | https://doi.org/10.1051/radiopro/2020019 | |
Publié en ligne | 15 mai 2020 |
- Absalom JP, Young SD, Crout NMJ, Nisbet AF, Woodman RFM, Smolders E, Gillett AG. 1999. Predicting soil to plant transfer of radiocaesium using soil characteristics. Environ. Sci. Technol. 33: 1218–1223. https://doi.org/10.1021/es9808853. [Google Scholar]
- Absalom JP, Young SD, Crout NMJ, Sanchez A, Wright SM, Smolders E, Nisbet AF, Gillett AG. 2001. Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics. J. Environ. Radioact. 52: 31–43. https://doi.org/10.1016/S0265-931X(00)00098-9. [CrossRef] [PubMed] [Google Scholar]
- Almahayni T, Sweeck L, Beresford NA, Barnett CL, Lofts S, Hosseini A, Brown J, Thørring H, Guillén J. 2019a. An evaluation of process-based models and their application in food chain assessments. CONCERT Deliverable D9.15. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Almahayni T, Beresford NA, Crout NMJ, Sweeck L. 2019b. Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: a review. J. Environ. Radioact. 201: 58–66. https://doi.org/10.1016/j.jenvrad.2019.01.006. [CrossRef] [PubMed] [Google Scholar]
- Avila R, Broed R, Pereira A. 2005. ECOLEGO − A toolbox for radioecological risk assessment. In: Proceedings of the International Conference on the Protection from the Effects of Ionizing Radiation, IAEA-CN-109/80. pp. 229–232. Stockholm: International Atomic Energy Agency. [Google Scholar]
- Barnett CL, Wells C, Fesenko S, Tagami K, Beresford NA. 2019a. Radionuclide biological half-lives for farm animals. NERC-Environmental Information Data Centre. https://doi.org/10.5285/d26ea56a-a692-427c-8f5a-a9bb6eb7da6b. [Google Scholar]
- Barnett CL, Wells C, Beresford NA, Guillén J, Gómez Polo FM, Thacker S, Lawlor AJ, Keenan PO. 2019b. Elemental concentrations (Ca, Cs, K, Mg, Sr) in a range of crops and associated soils from the UK and Spain. NERC Environmental Information Data Centre. https://doi.org/10.5285/76d6772d-477e-4a49-a4a6-a0fe6a0a9ba9. [Google Scholar]
- Beresford NA, Willey N. 2019. Moving radiation protection on from the limitations of empirical concentration ratios. J. Environ. Radioact. 208–209: 106020. https://doi.org/10.1016/j.jenvrad.2019.106020. [Google Scholar]
- Beresford NA, Wood MD, Vives i Batlle J, Yankovich TL, Bradshaw C, Willey N. 2016. Making the most of what we have: application of extrapolation approaches in radioecological wildlife transfer models. J. Environ. Radioact. 151: 373–386. http://dx.doi.org/10.1016/j.jenvrad.2015.03.022. [CrossRef] [PubMed] [Google Scholar]
- Beresford NA, Barnett CL, Brown JE, Hosseini A. 2019. CONFIDENCE overview of model improvements and future needs. CONCERT Deliverable D9.17. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Bogdevitch I, Tarasiuk S, Shmigelskaya I, Putyatin Y. 2002. Soil fertility influence on 137Cs and 90Sr transfer to the crops. Radioprotection 37: 485–490. https://doi.org/10.1051/radiopro/2002090. [Google Scholar]
- Brown J, Simmonds JR. 1995. FARMLAND A dynamic model for the transfer of radionuclides through terrestrial food chains. NRPB-R273. Didcot: National Radiological Protection Board. https://www.phe-protectionservices.org.uk/cms/assets/gfx/content/resource_4246cs69295f5f6b.pdf. [Google Scholar]
- Brown JE, Beresford NA, Hosseini A. 2013. Approaches to providing missing transfer parameter values in the ERICA Tool − How well do they work? J. Environ. Radioact. 126: 399–411. http://dx.doi.org/10.1016/j.jenvrad.2012.05.005. [CrossRef] [PubMed] [Google Scholar]
- Brown JE, Avila R, Barnett CL, Beresford NA, Hosseini A, Lind O-C, Oughton DH, Perez D, Salbu B, Teien HC, Thørring H. 2018. Improving models and learning from post-Fukushima studies. CONCERT Deliverable D9.13. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Brown JE, Beresford NA, Hosseini A, Barnett CL. 2020. Applying process-based models to the Borssele scenario. Radioprotection 55(HS1). https://doi.org/10.1051/radiopro/2020020. [Google Scholar]
- Chaplow J, Beresford NA, Barnett CL. Submitted. Calcium and magnesium concentrations in plants used as human and animal foods derived from global literature. NERC Environmental Information Data Centre. [Google Scholar]
- De Vries H, Geertsema G, Korsakissok I, Périllat R, Scheele R, Tomas J, Andronopoulos S, Astrup P, Bedwell P, Charnock T, Hamburger T, Ievdin I, Leadbetter S, Pázmándi T, Rudas C, Sogachev A, Szántó P, Wellings J. 2019. Published sets of probability maps of threshold exceedance for scenarios provided to WP4, WP5 & WP6 → 2. CONCERT Deliverable D9.4. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Funabashi Y, Kitazawa K. 2012. Fukushima in review: a complex disaster, a disastrous response. Bull. At. Sci. 68: 9–21. http://dx.doi.org/10.1177/0096340212440359. [Google Scholar]
- Guillén J. 2019. Published dataset on transfer in Mediterranean ecosystems. CONCERT Deliverable D9.14. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Guillén J, Baeza A, Izquierdo M, Beresford NA, Wood MD, Salas A, Muñoz-Serrano A, Corrales-Vázquez JM, Muñoz-Muñoz JG. 2018. Transfer parameters for ICRP’s Reference Animals and Plants in a terrestrial Mediterranean ecosystem. J. Environ. Radioact. 186: 9–22. https://doi.org/10.1016/j.jenvrad.2017.06.024. [CrossRef] [PubMed] [Google Scholar]
- Guillén J, Gómez Polo FM, Baeza A, Ontalba MA. 2019. Transfer parameters for radionuclides and radiologically significant stable elements to foodstuffs in Spain. NERC-Environmental Information Data Centre. https://doi.org/10.5285/48d5395e-e9fb-45ed-b69f-1ea0d2d36be6. [Google Scholar]
- Hinton TG, Garnier-Laplace J, Vandenhove H, Dowdall M, Adam-Guillermin C, Alonzo F, Barnett C, Beaugelin-Seiller K, Beresford NA, Bradshaw C, Brown J, Eyrolle F, Fevrier L, Gariel J-C, Gilbin R, Hertel-Aas T, Horemans N, Howard BJ, Ikäheimonen T, Mora JC, Oughton D, Real A, Salbu B, Simon-Cornu M, Steiner M, Sweeck L, Vives i Batlle J. 2013. An invitation to contribute to a strategic research agenda in radioecology. J. Environ. Radioact. 115: 78–82. http://dx.doi.org/10.1016/j.jenvrad.2012.07.011. [Google Scholar]
- Howard BJ, Strand P, Assimakopoulos P, Bréchignac F, Gascó C, Métivier H, Moberg L, Smith JT, Tamponnet C, Trueba C, Voigt G, Wright S. 2002. Estimation of radioecological sensitivity. Radioprotection 37: 1167–1173. http://dx.doi.org/10.1051/radiopro/2002142. [Google Scholar]
- van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: future prospects for food and food security. FAO Forestry Paper 171. Rome: FAO. http://www.fao.org/3/i3253e/i3253e.pdf. [Google Scholar]
- IAEA. 2010. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Reports Series No. 472. Vienna: IAEA. https://www-pub.iaea.org/MTCD/publications/PDF/trs472_web.pdf. [Google Scholar]
- IAEA. 2014. Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Technical Reports Series No. 479. Vienna: IAEA. http://www-pub.iaea.org/MTCD/Publications/PDF/Trs479_web.pdf . [Google Scholar]
- Kashparov V, Levchuk S, Zhurba M, Protsak V, Khomutinin YU, Beresford NA, Chaplow JS. 2018. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth Syst. Sci. Data 10: 339–353. https://doi.org/10.5194/essd-10-339-2018b. [Google Scholar]
- Lind O-C, Brown J, Hosseini A, Salbu B, Kashparov V, Beresford NA. 2019. Evaluation of the importance of hot particles in radioecological models. CONCERT Deliverable D9.16. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Müller H, Pröhl G. 1993. ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents. Health Phys. 64: 232–252. https://doi.org/10.1097/00004032-199303000-00002. [CrossRef] [PubMed] [Google Scholar]
- Müller H, Gering F, Pröhl G. 2004. Model description of the terrestrial food chain and dose module FDMT in RODOS PV 6.0. RODOS(RA3)-TN(03)06. Report version 1.1. https://resy5.iket.kit.edu/RODOS/Documents/Public/HandbookV6/Volume3/FDM_Terra.pdf. [Google Scholar]
- Panov AV, Alexakhin RM, Prudnikov PV, Novikov AA, Muzalevskaya AA. 2009. Assessment of countermeasure effects on 137Cs accumulation from soil by farm crops after the accident at the Chernobyl NPP. Radioprotection 44: 897–902. https://doi.org/10.1051/radiopro/20095160. [EDP Sciences] [Google Scholar]
- Penrose B, Beresford NA, Broadley M, Crout NMJ. 2015. Inter-varietal variation in caesium and strontium uptake in plant: a meta-analysis. J. Environ. Radioact. 139: 103–117. http://dx.doi.org/10.1016/j.jenvrad.2014.10.005. [CrossRef] [PubMed] [Google Scholar]
- Penrose B, Johnson née Payne KA, Arkhipov A, Maksimenko A, Gaschak S, Meacham MC, Crout NJM, White PJ, Beresford NA, Broadley MR. 2016. Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in Brassica oleracea. J. Environ. Radioact. 155–156: 112–121. http://dx.doi.org/10.1016/j.jenvrad.2016.02.020. [CrossRef] [PubMed] [Google Scholar]
- Penrose B, Beresford NA, Crout NM, Lovatt JA, Thompson R, Broadley MR. 2017. Forage grasses with lower uptake of caesium and strontium could provide ‘safer’ crops for radiologically contaminated areas. PLoS One 12: e0176040. https://doi.org/10.1371/journal.pone.0176040. [CrossRef] [PubMed] [Google Scholar]
- Salomaa S. (Ed.). 2019. Updating the SRAs of MELODI, ALLIANCE, NERIS, EURADOS and EURAMED. CONCERT Deliverable D2.13. https://concert-h2020.eu/en/Publications. [Google Scholar]
- Sato M, Takata D, Tanoi K, Ohstuki T, Muramatsu Y. 2015. Radiocesium transfer into the fruit of deciduous fruit trees contaminated during dormancy. J. Soil Sci. Plant Nutr. 61: 156–164. https://doi.org/10.1080/00380768.2014.975103. [CrossRef] [Google Scholar]
- Tipping E, Lofts S, Sonke JE. 2011. Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 8: 225–235. https://doi.org/10.1071/EN11016. [Google Scholar]
- Wang T, Hongyan Z, Hongliang Z. 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 6: 77. https://www.nature.com/articles/s41438-019-0159-x. [CrossRef] [PubMed] [Google Scholar]
- Willey NJ. 2010. Phylogeny can be used to make useful predictions of soil-to-plant transfer factors for radionuclides. Radiat. Environ. Biophys. 49: 613–623. https://doi.org/10.1007/s00411-010-0320-2. [PubMed] [Google Scholar]
- Willey N, Fawcett K. 2006. A phylogenetic effect on strontium concentrations in angiosperms. Environ. Exp. Bot. 57: 258–269. https://doi.org/10.1016/j.envexpbot.2005.06.005. [CrossRef] [Google Scholar]
- Wynne B. 1992. Misunderstood misunderstanding: social identities and public uptake of science. Public Underst. Sci. 1: 281–304. https://doi.org/10.1088/0963-6625/1/3/004. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.